Abstract
We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 μeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of gaγ ≳ 4 × 10−13 GeV−1 over a mass range of 34.6738 μeV < ma < 34.6771 μeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 μeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. Lett. 648 (2006) L109 [astro-ph/0608407] [INSPIRE].
S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].
F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].
R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].
L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].
M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects, Phys. Rev. D 91 (2015) 065014 [arXiv:1412.0789] [INSPIRE].
L. Fleury and G.D. Moore, Axion dark matter: strings and their cores, JCAP 01 (2016) 004 [arXiv:1509.00026] [INSPIRE].
P. Agrawal, J. Fan, M. Reece and L.-T. Wang, Experimental Targets for Photon Couplings of the QCD Axion, JHEP 02 (2018) 006 [arXiv:1709.06085] [INSPIRE].
L. Di Luzio, F. Mescia and E. Nardi, Redefining the Axion Window, Phys. Rev. Lett. 118 (2017) 031801 [arXiv:1610.07593] [INSPIRE].
P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy Cold Dark Matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].
I.G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys. 102 (2018) 89 [arXiv:1801.08127] [INSPIRE].
H. Primakoff, Photoproduction of neutral mesons in nuclear electric fields and the mean life of the neutral meson, Phys. Rev. 81 (1951) 899 [INSPIRE].
P. Sikivie, Experimental Tests of the Invisible Axion, Phys. Rev. Lett. 51 (1983) 1415 [Erratum ibid. 52 (1984) 695] [INSPIRE].
L. Krauss, J. Moody, F. Wilczek and D.E. Morris, Calculations for Cosmic Axion Detection, Phys. Rev. Lett. 55 (1985) 1797 [INSPIRE].
S. Al Kenany et al., Design and operational experience of a microwave cavity axion detector for the 20–100 μeV range, Nucl. Instrum. Meth. A 854 (2017) 11 [arXiv:1611.07123] [INSPIRE].
J.I. Read, The Local Dark Matter Density, J. Phys. G 41 (2014) 063101 [arXiv:1404.1938] [INSPIRE].
R.H. Dicke, The Measurement of Thermal Radiation at Microwave Frequencies, Rev. Sci. Instrum. 17 (1946) 268 [INSPIRE].
ADMX collaboration, A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment, Phys. Rev. Lett. 120 (2018) 151301 [arXiv:1804.05750] [INSPIRE].
ADMX collaboration, Extended Search for the Invisible Axion with the Axion Dark Matter Experiment, Phys. Rev. Lett. 124 (2020) 101303 [arXiv:1910.08638] [INSPIRE].
HAYSTAC collaboration, Results from phase 1 of the HAYSTAC microwave cavity axion experiment, Phys. Rev. D 97 (2018) 092001 [arXiv:1803.03690] [INSPIRE].
S. Lee, S. Ahn, J. Choi, B.R. Ko and Y.K. Semertzidis, Axion Dark Matter Search around 6.7 μeV, Phys. Rev. Lett. 124 (2020) 101802 [arXiv:2001.05102] [INSPIRE].
J. Jeong, S. Youn, S. Ahn, J.E. Kim and Y.K. Semertzidis, Concept of multiple-cell cavity for axion dark matter search, Phys. Lett. B 777 (2018) 412 [arXiv:1710.06969] [INSPIRE].
J. Jeong et al., Search for Invisible Axion Dark Matter with a Multiple-Cell Haloscope, Phys. Rev. Lett. 125 (2020) 221302 [arXiv:2008.10141] [INSPIRE].
O.K. Baker et al., Prospects for Searching Axion-like Particle Dark Matter with Dipole, Toroidal and Wiggler Magnets, Phys. Rev. D 85 (2012) 035018 [arXiv:1110.2180] [INSPIRE].
V. Anastassopoulos et al., New CAST Limit on the Axion-Photon Interaction, Nature Phys. 13 (2017) 584.
A.A. Melcón et al., Axion Searches with Microwave Filters: the RADES project, JCAP 05 (2018) 040 [arXiv:1803.01243] [INSPIRE].
MADMAX Working Group collaboration, Dielectric Haloscopes: A New Way to Detect Axion Dark Matter, Phys. Rev. Lett. 118 (2017) 091801 [arXiv:1611.05865] [INSPIRE].
BRASS collaboration, https://www.physik.uni-hamburg.de/en/iexp/gruppe-horns/forschung/brass.html, accessed: (13-04-2021).
D. Alesini et al., Galactic axions search with a superconducting resonant cavity, Phys. Rev. D 99 (2019) 101101 [arXiv:1903.06547] [INSPIRE].
D. Alesini et al., Search for invisible axion dark matter of mass ma = 43 μeV with the QUAX-aγ experiment, Phys. Rev. D 103 (2021) 102004 [arXiv:2012.09498] [INSPIRE].
B.T. McAllister et al., The ORGAN Experiment: An axion haloscope above 15 GHz, Phys. Dark Univ. 18 (2017) 67.
K.M. Backes et al., A quantum-enhanced search for dark matter axions, Nature Phys. 590 (2021) 238.
CST Microwave Studio Suite, www.3ds.com, accessed: (25-08-2020).
D.M. Pozar, Microwave engineering 3rd ed., Wiley, Hoboken, NJ, U.S.A. (2005).
Keysight Technologies, Application Note 5952-3706E (2019), https://www.keysight.com/ch/de/assets/7018-06829/application-notes/5952-3706.pdf .
B.M. Brubaker, L. Zhong, S.K. Lamoreaux, K.W. Lehnert and K.A. van Bibber, HAYSTAC axion search analysis procedure, Phys. Rev. D 96 (2017) 123008 [arXiv:1706.08388] [INSPIRE].
A. Savitzky and M.J.E. Golay, Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem. 36 (1964) 1627.
M.S. Turner, Periodic signatures for the detection of cosmic axions, Phys. Rev. D 42 (1990) 3572 [INSPIRE].
L. Lista, Statistical Methods for Data Analysis in Particle Physics, volume 941, Springer, (2017).
ADMX collaboration, Piezoelectrically Tuned Multimode Cavity Search for Axion Dark Matter, Phys. Rev. Lett. 121 (2018) 261302 [arXiv:1901.00920] [INSPIRE].
S. De Panfilis et al., Limits on the Abundance and Coupling of Cosmic Axions at 4.5 < ma < 5.0 μeV, Phys. Rev. Lett. 59 (1987) 839 [INSPIRE].
C. Hagmann, P. Sikivie, N.S. Sullivan and D.B. Tanner, Results from a search for cosmic axions, Phys. Rev. D 42 (1990) 1297 [INSPIRE].
C. O’Hare, Axion limits, https://github.com/cajohare/AxionLimits/.
A. Álvarez Melcón et al., Scalable haloscopes for axion dark matter detection in the 30μeV range with RADES, JHEP 07 (2020) 084 [arXiv:2002.07639] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2104.13798
Deceased (B. Lakić)
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Álvarez Melcón, A., Arguedas Cuendis, S., Baier, J. et al. First results of the CAST-RADES haloscope search for axions at 34.67 μeV. J. High Energ. Phys. 2021, 75 (2021). https://doi.org/10.1007/JHEP10(2021)075
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2021)075