Abstract
The spectrum of conformal weights for the CFT describing the two-dimensional critical Q-state Potts model (or its close cousin, the dense loop model) has been known for more than 30 years [1]. However, the exact nature of the corresponding Vir ⊗ \( \overline{\mathrm{Vir}} \) representations has remained unknown up to now. Here, we solve the problem for generic values of Q. This is achieved by a mixture of different techniques: a careful study of “Koo-Saleur generators” [2], combined with measurements of four-point amplitudes, on the numerical side, and OPEs and the four-point amplitudes recently determined using the “interchiral conformal bootstrap” in [3] on the analytical side. We find that null-descendants of diagonal fields having weights (hr,1, hr,1) (with r ∈ ℕ*) are truly zero, so these fields come with simple Vir ⊗ \( \overline{\mathrm{Vir}} \) (“Kac”) modules. Meanwhile, fields with weights (hr,s, hr,−s) and (hr,−s, hr,s) (with r, s ∈ ℕ*) come in indecomposable but not fully reducible representations mixing four simple Vir ⊗ \( \overline{\mathrm{Vir}} \) modules with a familiar “diamond” shape. The “top” and “bottom” fields in these diamonds have weights (hr,−s, hr,−s), and form a two-dimensional Jordan cell for L0 and \( {\overline{L}}_0 \). This establishes, among other things, that the Potts-model CFT is logarithmic for Q generic. Unlike the case of non-generic (root of unity) values of Q, these indecomposable structures are not present in finite size, but we can nevertheless show from the numerical study of the lattice model how the rank-two Jordan cells build up in the infinite-size limit.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
P. Di Francesco, H. Saleur and J.-B. Zuber, Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models, J. Stat. Phys. 49 (1987) 57.
W.M. Koo and H. Saleur, Representations of the Virasoro algebra from lattice models, Nucl. Phys. B 426 (1994) 459 [hep-th/9312156] [INSPIRE].
Y. He, J.L. Jacobsen and H. Saleur, Geometrical four-point functions in the two-dimensional critical Q-state Potts model: The interchiral conformal bootstrap, arXiv:2005.07258 [INSPIRE].
V.S. Dotsenko and V.A. Fateev, Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].
M. den Nijs, Extended scaling relations for the magnetic critical exponents of the Potts model, Phys. Rev. B 27 (1983) 1674 [INSPIRE].
B. Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas, J. Statist. Phys. 34 (1984) 731 [INSPIRE].
H. Saleur, Conformal invariance for polymers and percolation, J. Phys. A 20 (1987) 455.
D. Friedan, Z.-a. Qiu and S.H. Shenker, Superconformal Invariance in Two-Dimensions and the Tricritical Ising Model, Phys. Lett. B 151 (1985) 37 [INSPIRE].
G. Delfino and J. Viti, On three-point connectivity in two-dimensional percolation, J. Phys. A 44 (2011) 032001 [arXiv:1009.1314] [INSPIRE].
M. Picco, R. Santachiara, J. Viti and G. Delfino, Connectivities of Potts Fortuin-Kasteleyn clusters and time-like Liouville correlator, Nucl. Phys. B 875 (2013) 719 [arXiv:1304.6511] [INSPIRE].
Y. Ikhlef, J.L. Jacobsen and H. Saleur, Three-Point Functions in c≤1 Liouville Theory and Conformal Loop Ensembles, Phys. Rev. Lett. 116 (2016) 130601 [arXiv:1509.03538] [INSPIRE].
G. Gori and J. Viti, Four-point boundary connectivities in critical two-dimensional percolation from conformal invariance, JHEP 12 (2018) 131 [arXiv:1806.02330] [INSPIRE].
M. Picco, S. Ribault and R. Santachiara, A conformal bootstrap approach to critical percolation in two dimensions, SciPost Phys. 1 (2016) 009 [arXiv:1607.07224] [INSPIRE].
M. Picco, S. Ribault and R. Santachiara, On four-point connectivities in the critical 2d Potts model, SciPost Phys. 7 (2019) 044 [arXiv:1906.02566] [INSPIRE].
J.L. Jacobsen and H. Saleur, Bootstrap approach to geometrical four-point functions in the two-dimensional critical Q-state Potts model: A study of the s-channel spectra, JHEP 01 (2019) 084 [arXiv:1809.02191] [INSPIRE].
Y. He, L. Grans-Samuelsson, J.L. Jacobsen and H. Saleur, Geometrical four-point functions in the two-dimensional critical Q-state Potts model: connections with the RSOS models, JHEP 05 (2020) 156 [arXiv:2002.09071] [INSPIRE].
A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B 410 (1993) 535 [hep-th/9303160] [INSPIRE].
A. Gainutdinov, D. Ridout and I. Runkel eds., Special issue on logarithmic conformal field theory, J. Phys. A 46 (2013).
L. Grans-Samuelsson, J.L. Jacobsen and H. Saleur, The action of the Virasoro algebra in the XXZ spin chain, to appear.
A. Milsted and G. Vidal, Extraction of conformal data in critical quantum spin chains using the Koo-Saleur formula, Phys. Rev. B 96 (2017) 245105 [arXiv:1706.01436] [INSPIRE].
Y. Zou, A. Milsted and G. Vidal, Conformal data and renormalization group flow in critical quantum spin chains using periodic uniform matrix product states, Phys. Rev. Lett. 121 (2018) 230402 [arXiv:1710.05397] [INSPIRE].
Y. Zou, A. Milsted and G. Vidal, Conformal fields and operator product expansion in critical quantum spin chains, Phys. Rev. Lett. 124 (2020) 040604 [arXiv:1901.06439] [INSPIRE].
R. Nivesvivat and S. Ribault, Logarithmic CFT at generic central charge: from Liouville theory to the Q-state Potts model, arXiv:2007.04190 [INSPIRE].
V. Gorbenko and B. Zan, Two-dimensional O(n) models and logarithmic CFTs, arXiv:2005.07708 [INSPIRE].
A.M. Gainutdinov, J.L. Jacobsen and H. Saleur, A fusion for the periodic Temperley-Lieb algebra and its continuum limit, JHEP 11 (2018) 117 [arXiv:1712.07076] [INSPIRE].
R. Vasseur, J.L. Jacobsen and H. Saleur, Logarithmic observables in critical percolation, J. Stat. Mech. 1207 (2012) L07001 [arXiv:1206.2312] [INSPIRE].
R. Vasseur and J.L. Jacobsen, Operator content of the critical Potts model in d dimensions and logarithmic correlations, Nucl. Phys. B 880 (2014) 435 [arXiv:1311.6143] [INSPIRE].
R. Couvreur, J.L. Jacobsen and R. Vasseur, Non-scalar operators for the Potts model in arbitrary dimension, J. Phys. A 50 (2017) 474001 [arXiv:1704.02186] [INSPIRE].
J. Dubail, J.L. Jacobsen and H. Saleur, Critical exponents of domain walls in the two-dimensional potts model, J. Phys. A 43 (2010) 482002 [arXiv:1008.1216].
J. Dubail, J.L. Jacobsen and H. Saleur, Bulk and boundary critical behaviour of thin and thick domain walls in the two-dimensional Potts model, J. Stat. Mech. (2010) P12026 [arXiv:1010.1700].
R. Vasseur and J.L. Jacobsen, Critical properties of joint spin and Fortuin-Kasteleyn observables in the two-dimensional Potts model, J. Phys. A 45 (2012) 165001 [arXiv:1111.4033].
N. Read and H. Saleur, Exact spectra of conformal supersymmetric nonlinear σ-models in two-dimensions, Nucl. Phys. B 613 (2001) 409 [hep-th/0106124] [INSPIRE].
J.-F. Richard and J.L. Jacobsen, Eigenvalue amplitudes of the Potts model on a torus, Nucl. Phys. B 769 (2007) 256 [math-ph/0608055] [INSPIRE].
J.L. Jacobsen and H. Saleur, The Antiferromagnetic transition for the square-lattice Potts model, Nucl. Phys. B 743 (2006) 207 [cond-mat/0512058] [INSPIRE].
A.M. Gainutdinov, N. Read, H. Saleur and R. Vasseur, The periodic sf(2—1) alternating spin chain and its continuum limit as a bulk logarithmic conformal field theory at c = 0, JHEP 05 (2015) 114 [arXiv:1409.0167] [INSPIRE].
H. Saleur and B. Duplantier, Exact Determination of the Percolation Hull Exponent in Two Dimensions, Phys. Rev. Lett. 58 (1987) 2325 [INSPIRE].
N. Read and H. Saleur, Enlarged symmetry algebras of spin chains, loop models, and S-matrices, Nucl. Phys. B 777 (2007) 263 [cond-mat/0701259] [INSPIRE].
A.M. Gainutdinov, N. Read and H. Saleur, Continuum Limit and Symmetries of the Periodic \( \mathfrak{gl} \)(1|1) Spin Chain, Nucl. Phys. B 871 (2013) 245 [arXiv:1112.3403] [INSPIRE].
A.M. Gainutdinov, N. Read and H. Saleur, Bimodule Structure in the Periodic \( \mathfrak{gl} \)(1|1) Spin Chain, Nucl. Phys. B 871 (2013) 289 [arXiv:1112.3407] [INSPIRE].
A.M. Gainutdinov, N. Read and H. Saleur, Associative algebraic approach to logarithmic CFT in the bulk: the continuum limit of the \( \mathfrak{gl} \)(1|1) periodic spin chain, Howe duality and the interchiral algebra, Commun. Math. Phys. 341 (2016) 35 [arXiv:1207.6334] [INSPIRE].
H.N.V. Temperley and E.H. Lieb, Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem, Proc. Roy. Soc. Lond. A 322 (1971) 251 [INSPIRE].
P. Martin and H. Saleur, On an Algebraic approach to higher dimensional statistical mechanics, Commun. Math. Phys. 158 (1993) 155 [hep-th/9208061] [INSPIRE].
P. Martin and H. Saleur, The Blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys. 30 (1994) 189 [hep-th/9302094] [INSPIRE].
J.J. Graham and G.I. Lehrer, The representation theory of affine Temperley-Lieb algebras, L’Ens. Math. 44 (1998) 173.
L. Grans-Samuelsson, J.L. Jacobsen, L. Liu and H. Saleur, The action of the Virasoro algebra in quantum spin chains. II. The root of unity case, in preparation.
R. Santachiara and J. Viti, Local logarithmic correlators as limits of Coulomb gas integrals, Nucl. Phys. B 882 (2014) 229 [arXiv:1311.2055] [INSPIRE].
R. Vasseur, J.L. Jacobsen and H. Saleur, Indecomposability parameters in chiral Logarithmic Conformal Field Theory, Nucl. Phys. B 851 (2011) 314 [arXiv:1103.3134] [INSPIRE].
J. Dubail, J.L. Jacobsen and H. Saleur, Conformal field theory at central charge c = 0: A measure of the indecomposability (b) parameters, Nucl. Phys. B 834 (2010) 399 [arXiv:1001.1151] [INSPIRE].
R. Vasseur, A.M. Gainutdinov, J.L. Jacobsen and H. Saleur, The Puzzle of bulk conformal field theories at central charge c=0, Phys. Rev. Lett. 108 (2012) 161602 [arXiv:1110.1327] [INSPIRE].
R. Couvreur, J.L. Jacobsen and H. Saleur, Entanglement in nonunitary quantum critical spin chains, Phys. Rev. Lett. 119 (2017) 040601 [arXiv:1611.08506] [INSPIRE].
M.R. Gaberdiel, I. Runkel and S. Wood, A Modular invariant bulk theory for the c=0 triplet model, J. Phys. A 44 (2011) 015204 [arXiv:1008.0082] [INSPIRE].
V. Gurarie and A.W.W. Ludwig, Conformal algebras of 2 − D disordered systems, J. Phys. A 35 (2002) L377 [cond-mat/9911392] [INSPIRE].
B. Duplantier and A.W.W. Ludwig, Multifractals, operator product expansion and field theory, Phys. Rev. Lett. 66 (1991) 247 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2007.11539
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Grans-Samuelsson, L., Liu, L., He, Y. et al. The action of the Virasoro algebra in the two-dimensional Potts and loop models at generic Q. J. High Energ. Phys. 2020, 109 (2020). https://doi.org/10.1007/JHEP10(2020)109
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2020)109