[go: up one dir, main page]

Skip to main content
Log in

A practical solution to the sign problem in a matrix model for dynamical compactification

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The matrix model formulation of superstring theory offers the possibility to understand the appearance of 4d space-time from 10d as a consequence of spontaneous breaking of the SO(10) symmetry. Monte Carlo studies of this issue is technically difficult due to the so-called sign problem. We present a practical solution to this problem generalizing the factorization method proposed originally by two of the authors (K.N.A. and J.N.). Explicit Monte Carlo calculations and large-N extrapolations are performed in a simpler matrix model with similar properties, and reproduce quantitative results obtained previously by the Gaussian expansion method. Our results also confirm that the spontaneous symmetry breaking indeed occurs due to the phase of the fermion determinant, which vanishes for collapsed configurations. We clarify various generic features of this approach, which would be useful in applying it to other statistical systems with the sign problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [ INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. M. Hanada, J. Nishimura and S. Takeuchi, Non-lattice simulation for supersymmetric gauge theories in one dimension, Phys. Rev. Lett. 99 (2007) 161602 [arXiv:0706.1647] [ INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Catterall and T. Wiseman, Towards lattice simulation of the gauge theory duals to black holes and hot strings, JHEP 12 (2007) 104 [arXiv:0706.3518] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett. 100 (2008) 021601 [arXiv:0707.4454] [ INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev. D 78 (2008) 041502 [arXiv:0803.4273] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [ INSPIRE].

    Article  ADS  Google Scholar 

  7. S. Catterall and T. Wiseman, Extracting black hole physics from the lattice, JHEP 04 (2010) 077 [arXiv:0909.4947] [ INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Hanada, A. Miwa, J. Nishimura and S. Takeuchi, Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 181602 [arXiv:0811.2081] [ INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Monte Carlo studies of Matrix theory correlation functions, Phys. Rev. Lett. 104 (2010) 151601 [arXiv:0911.1623] [ INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Direct test of the gauge-gravity correspondence for Matrix theory correlation functions, arXiv:1108.5153 [ INSPIRE].

  11. J. Nishimura, Non-lattice simulation of supersymmetric gauge theories as a probe to quantum black holes and strings, PoS(LAT2009)016 [arXiv:0912.0327] [ INSPIRE].

  12. N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Aoki et al., IIB matrix model, Prog. Theor. Phys. Suppl. 134 (1999) 47 [hep-th/9908038] [ INSPIRE].

    Article  ADS  Google Scholar 

  15. T. Azuma, Matrix models and the gravitational interaction, hep-th/0401120 [ INSPIRE].

  16. H. Aoki, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Space-time structures from IIB matrix model, Prog. Theor. Phys. 99 (1998) 713 [hep-th/9802085] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. V. Kostelecky and S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory, Phys. Rev. D 39 (1989) 683 [ INSPIRE].

    ADS  Google Scholar 

  18. J. Nishimura and F. Sugino, Dynamical generation of four-dimensional space-time in the IIB matrix model, JHEP 05 (2002) 001 [hep-th/0111102] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. H. Kawai, S. Kawamoto, T. Kuroki, T. Matsuo and S. Shinohara, Mean field approximation of IIB matrix model and emergence of four-dimensional space-time, Nucl. Phys. B 647 (2002) 153 [hep-th/0204240] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. H. Kawai, S. Kawamoto, T. Kuroki and S. Shinohara, Improved perturbation theory and four-dimensional space-time in IIB matrix model, Prog. Theor. Phys. 109 (2003) 115 [hep-th/0211272] [ INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. T. Aoyama and H. Kawai, Higher order terms of improved mean field approximation for IIB matrix model and emergence of four-dimensional space-time, Prog. Theor. Phys. 116 (2006) 405 [hep-th/0603146] [ INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. J. Nishimura, T. Okubo and F. Sugino, Systematic study of the SO(10) symmetry breaking vacua in the matrix model for type IIB superstrings, arXiv:1108.1293 [ INSPIRE].

  23. S.-W. Kim, J. Nishimura and A. Tsuchiya, Expanding (3 + 1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9 + 1)-dimensions, arXiv:1108.1540 [ INSPIRE].

  24. W. Krauth, H. Nicolai and M. Staudacher, Monte Carlo approach to M-theory, Phys. Lett. B 431 (1998) 31 [hep-th/9803117] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. W. Krauth and M. Staudacher, Finite Yang-Mills integrals, Phys. Lett. B 435 (1998) 350 [hep-th/9804199] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. W. Krauth and M. Staudacher, Eigenvalue distributions in Yang-Mills integrals, Phys. Lett. B 453 (1999) 253 [hep-th/9902113] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. T. Hotta, J. Nishimura and A. Tsuchiya, Dynamical aspects of large-N reduced models, Nucl. Phys. B 545 (1999) 543 [hep-th/9811220] [ INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Ambjørn, K. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, Monte Carlo studies of the IIB matrix model at large N, JHEP 07 (2000) 011 [hep-th/0005147] [ INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Ambjørn, K. Anagnostopoulos, W. Bietenholz, T. Hotta and J. Nishimura, Large-N dynamics of dimensionally reduced 4D SU(N) super Yang-Mills theory, JHEP 07 (2000) 013 [hep-th/0003208] [ INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Ambjørn, K. Anagnostopoulos, W. Bietenholz, F. Hofheinz and J. Nishimura, On the spontaneous breakdown of Lorentz symmetry in matrix models of superstrings, Phys. Rev. D 65 (2002) 086001 [hep-th/0104260] [ INSPIRE].

    ADS  Google Scholar 

  31. P. Bialas, Z. Burda, B. Petersson and J. Tabaczek, Large-N limit of the IKKT matrix model, Nucl. Phys. B 592 (2001) 391 [hep-lat/0007013] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. Z. Burda, B. Petersson and J. Tabaczek, Geometry of reduced supersymmetric 4D Yang-Mills integrals, Nucl. Phys. B 602 (2001) 399 [hep-lat/0012001] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. Z. Burda, B. Petersson and M. Wattenberg, Semiclassical geometry of 4D reduced supersymmetric Yang-Mills integrals, JHEP 03 (2005) 058 [hep-th/0503032] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. K. Anagnostopoulos and J. Nishimura, New approach to the complex action problem and its application to a nonperturbative study of superstring theory, Phys. Rev. D 66 (2002) 106008 [hep-th/0108041] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. J. Ambjørn, K. Anagnostopoulos, J. Nishimura and J. Verbaarschot, The factorization method for systems with a complex action: a test in random matrix theory for finite density QCD, JHEP 10 (2002) 062 [hep-lat/0208025] [ INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Ambjørn, K.N. Anagnostopoulos, J. Nishimura and J.J. Verbaarschot, Noncommutativity of the zero chemical potential limit and the thermodynamic limit in finite density systems, Phys. Rev. D 70 (2004) 035010 [hep-lat/0402031] [ INSPIRE].

    ADS  Google Scholar 

  37. V. Azcoiti, G. Di Carlo, A. Galante and V. Laliena, New proposal for numerical simulations of theta vacuum-like systems, Phys. Rev. Lett. 89 (2002) 141601 [hep-lat/0203017] [ INSPIRE].

    Article  ADS  Google Scholar 

  38. Z. Fodor, S.D. Katz and C. Schmidt, The density of states method at non-zero chemical potential, JHEP 03 (2007) 121 [hep-lat/0701022] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. Z. Fodor and S. Katz, A new method to study lattice QCD at finite temperature and chemical potential, Phys. Lett. B 534 (2002) 87 [hep-lat/0104001] [ INSPIRE].

    ADS  Google Scholar 

  40. Z. Fodor and S. Katz, Critical point of QCD at finite T and μ, lattice results for physical quark masses, JHEP 04 (2004) 050 [hep-lat/0402006] [ INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Ejiri, On the existence of the critical point in finite density lattice QCD, Phys. Rev. D 77 (2008) 014508 [arXiv:0706.3549] [ INSPIRE].

    ADS  Google Scholar 

  42. M. Lombardo, K. Splittorff and J. Verbaarschot, Distributions of the phase angle of the fermion determinant in QCD, Phys. Rev. D 80 (2009) 054509 [arXiv:0904.2122] [ INSPIRE].

    ADS  Google Scholar 

  43. M. Lombardo, K. Splittorff and J. Verbaarschot, The fluctuations of the quark number and of the chiral condensate, Phys. Rev. D 81 (2010) 045012 [arXiv:0910.5482] [ INSPIRE].

    ADS  Google Scholar 

  44. W. Unger and P. de Forcrand, Continuous time Monte Carlo for lattice QCD in the strong coupling limit, arXiv:1107.1553 [ INSPIRE].

  45. P. de Forcrand and O. Philipsen, Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential, Phys. Rev. Lett. 105 (2010) 152001 [arXiv:1004.3144] [ INSPIRE].

    Article  ADS  Google Scholar 

  46. J. Bloch, Evading the sign problem in random matrix simulations, arXiv:1103.3467 [ INSPIRE].

  47. J. Bloch and T. Wettig, The QCD sign problem and dynamical simulations of random matrices, JHEP 05 (2011) 048 [arXiv:1102.3715] [ INSPIRE].

    Article  ADS  Google Scholar 

  48. G. Aarts, F.A. James, E. Seiler and I.-O. Stamatescu, Complex Langevin: etiology and diagnostics of its main problem, Eur. Phys. J. C 71 (2011) 1756 [arXiv:1101.3270] [ INSPIRE].

    Article  ADS  Google Scholar 

  49. G. Aarts and F.A. James, On the convergence of complex Langevin dynamics: the three-dimensional XY model at finite chemical potential, JHEP 08 (2010) 020 [arXiv:1005.3468] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. S. Chandrasekharan and A. Li, Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions, JHEP 01 (2011) 018 [arXiv:1008.5146] [ INSPIRE].

    Article  ADS  Google Scholar 

  51. C. Allton et al., The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66 (2002) 074507 [hep-lat/0204010] [ INSPIRE].

    ADS  Google Scholar 

  52. R.V. Gavai and S. Gupta, Pressure and nonlinear susceptibilities in QCD at finite chemical potentials, Phys. Rev. D 68 (2003) 034506 [hep-lat/0303013] [ INSPIRE].

    ADS  Google Scholar 

  53. M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [ INSPIRE].

    ADS  Google Scholar 

  54. P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [ INSPIRE].

    Article  ADS  Google Scholar 

  55. W. Bietenholz, A. Pochinsky and U. Wiese, Meron cluster simulation of the theta vacuum in the 2DO(3) model, Phys. Rev. Lett. 75 (1995) 4524 [hep-lat/9505019] [ INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Creutz, Microcanonical Monte Carlo simulation, Phys. Rev. Lett. 50 (1983) 1411 [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. G. Bhanot, K. Bitar and R. Salvador, On solving four-dimensional SU(2) gauge theory by numerically finding its partition function, Phys. Lett. B 188 (1987) 246 [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. G. Bhanot, A. Gocksch and P. Rossi, On simulating complex actions, Phys. Lett. B 199 (1987) 101 [ INSPIRE].

    ADS  Google Scholar 

  59. A. Gocksch, Simulating lattice QCD at finite density, Phys. Rev. Lett. 61 (1988) 2054 [ INSPIRE].

    Article  ADS  Google Scholar 

  60. M. Karliner, S.R. Sharpe and Y. Chang, Zeroing in on SU(3), Nucl. Phys. B 302 (1988) 204 [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. A. Gocksch, The Riemann walk: a method for simulating complex actions, Phys. Lett. B 206 (1988) 290 [ INSPIRE].

    ADS  Google Scholar 

  62. J. Nishimura and G. Vernizzi, Spontaneous breakdown of Lorentz invariance in IIB matrix model, JHEP 04 (2000) 015 [hep-th/0003223] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. J. Nishimura and G. Vernizzi, Brane world from IIB matrices, Phys. Rev. Lett. 85 (2000) 4664 [hep-th/0007022] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. G. Vernizzi and J.F. Wheater, Rotational symmetry breaking in multimatrix models, Phys. Rev. D 66 (2002) 085024 [Erratum ibid. D 67 (2003) 029904] [hep-th/0206226] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  65. J. Nishimura, Exactly solvable matrix models for the dynamical generation of space-time in superstring theory, Phys. Rev. D 65 (2002) 105012 [hep-th/0108070] [ INSPIRE].

    ADS  Google Scholar 

  66. J. Nishimura, T. Okubo and F. Sugino, Gaussian expansion analysis of a matrix model with the spontaneous breakdown of rotational symmetry, Prog. Theor. Phys. 114 (2005) 487 [hep-th/0412194] [ INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. K.N. Anagnostopoulos, T. Azuma and J. Nishimura, A general approach to the sign problem: the factorization method with multiple observables, Phys. Rev. D 83 (2011) 054504 [arXiv:1009.4504] [ INSPIRE].

    ADS  Google Scholar 

  68. K.N. Anagnostopoulos, T. Azuma and J. Nishimura, work in progress.

  69. T. Aoyama, J. Nishimura and T. Okubo, Spontaneous breaking of the rotational symmetry in dimensionally reduced super Yang-Mills models, Prog. Theor. Phys. 125 (2011) 537 [arXiv:1007.0883] [ INSPIRE].

    Article  ADS  MATH  Google Scholar 

  70. K.N. Anagnostopoulos, T. Azuma, K. Nagao and J. Nishimura, Impact of supersymmetry on the nonperturbative dynamics of fuzzy spheres, JHEP 09 (2005) 046 [hep-th/0506062] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiro Azuma.

Additional information

ArXiv ePrint: 1108.1534

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anagnostopoulos, K.N., Azuma, T. & Nishimura, J. A practical solution to the sign problem in a matrix model for dynamical compactification. J. High Energ. Phys. 2011, 126 (2011). https://doi.org/10.1007/JHEP10(2011)126

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)126

Keywords

Navigation