Abstract
We construct the holographic model of an S ± multiband superconductor. This system is a candidate to explain the anomalous features of the iron-based superconductors (e.g. LaFeAsO, BFe2As2, and other pnictides and arsenides). We study the framework, which allows formation of the sign-interchanging order parameter. We also calculate the electric AC conductivity and study its features, related to the interband interaction.
Similar content being viewed by others
References
J. Paglione and R.L. Greene, High-temperature superconductivity in iron-based materials, Nature Phys. 6 (2010) 645 [arXiv:1006.4618].
H. Oh, J. Moon, D. Shin, C.-Y. Moon and H.J. Choi, Brief review on iron-based superconductors: are there clues for unconventional superconductivity?, arXiv:1201.0237.
A.A. Golubov and I.I. Mazin, Sign reversal of the order parameter in s wave superconductors, Physica C 243 (1995) 153.
I.I. Mazin, D.J. Singh, M.D. Johannes and M.H. Du, Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO 1−x F x , Phys. Rev. Lett. 101 (2008) 057003 [arXiv:0803.2740].
P.J. Hirschfeld, M.M. Korshunov and I.I. Mazin, Gap symmetry and structure of Fe-based superconductors, Rept. Prog. Phys. 74 (2011) 124508 [arXiv:1106.3712].
D.V. Efremov, A.A. Golubov and O.V. Dolgov, Manifestations of impurity-induced s ± → s ++ transition: multiband model for dynamical response functions, New J. Phys. 15 (2013) 013002 [arXiv:1209.2256].
E.G. Maksimov et al., Two-band Bardeen-Cooper-Schrieffer superconducting state of the iron pnictide compound Ba(Fe 0.9 Co 0.1 ) 2 As 2, Phys. Rev. B 83 (2011) 140502 [arXiv:1008.3473].
T. Qian et al., Absence of holelike Fermi surface in superconducting K 0.8 Fe 1.7 Se2 revealed by ARPES, arXiv:1012.6017.
M. Nakajima et al., Evolution of the optical spectrum with doping in Ba(Fe 1−x Co x ) 2 As 2, Phys. Rev. B 81 (2010) 104528 [arXiv:1003.5038].
Z.G. Chen, R.H. Yuan, T. Dong and N.L. Wang, Optical spectroscopy of single-crystalline LaFeAsO, Phys. Rev. B 81 (2010) 100502 [arXiv:0910.1318].
W.Z. Hu et al., Origin of the spin density wave instability in AFe 2 As 2 (A = Ba, Sr) as revealed by optical spectroscopy, Phys. Rev. Lett. 101 (2008) 257005 [arXiv:0806.2652].
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].
S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [INSPIRE].
S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].
J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards a holographic model of D-wave superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [INSPIRE].
F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981] [INSPIRE].
F. Benini, C.P. Herzog and A. Yarom, Holographic Fermi arcs and a d-wave gap, Phys. Lett. B 701 (2011) 626 [arXiv:1006.0731] [INSPIRE].
T. Albash and C.V. Johnson, Vortex and droplet engineering in holographic superconductors, Phys. Rev. D 80 (2009) 126009 [arXiv:0906.1795] [INSPIRE].
O. Domenech, M. Montull, A. Pomarol, A. Salvio and P.J. Silva, Emergent gauge fields in holographic superconductors, JHEP 08 (2010) 033 [arXiv:1005.1776] [INSPIRE].
G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].
N. Iizuka and K. Maeda, Towards the lattice effects on the holographic superconductor, JHEP 11 (2012) 117 [arXiv:1207.2943] [INSPIRE].
G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].
K. Hashimoto and N. Iizuka, Impurities in holography and transport coefficients, arXiv:1207.4643 [INSPIRE].
S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].
C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].
F. Benini, Holography and condensed matter, Fortsch. Phys. 60 (2012) 810 [arXiv:1202.6008] [INSPIRE].
S. Sachdev, Condensed matter and AdS/CFT, Lect. Notes Phys. 828 (2011) 273 [arXiv:1002.2947] [INSPIRE].
C.-Y. Huang, F.-L. Lin and D. Maity, Holographic multi-band superconductor, Phys. Lett. B 703 (2011) 633 [arXiv:1102.0977] [INSPIRE].
A. Charnukha, O.V. Dolgov, A.A. Golubov et al., Eliashberg approach to infrared anomalies induced by the superconducting state of Ba 0.68 K 0.32 Fe 2 As 2 single crystals, Phys. Rev. B 84 (2011) 174511.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1210.6074
Rights and permissions
About this article
Cite this article
Krikun, A., Kirilin, V.P. & Sadofyev, A.V. Holographic model of the S ± multiband superconductor. J. High Energ. Phys. 2013, 136 (2013). https://doi.org/10.1007/JHEP07(2013)136
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2013)136