[go: up one dir, main page]

Skip to main content
Log in

AdS/BCFT correspondence for higher curvature gravity: an example

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the effects of higher curvature terms on a holographic dual description of boundary conformal field theory. Specifically, we consider three-dimensional gravity with a specific combination of Ricci tensor square and curvature scalar square, so called, new massive gravity. We show that a boundary entropy and an entanglement entropy are given by similar expressions with those of the Einstein gravity case when we introduce an effective Newton’s constant and an effective cosmological constant. We also show that the holographic g-theorem still holds in this extension, and we give some comments about the central charge dependence of boundary entropy in the holographic construction. In the same way, we consider new type black holes and comment on the boundary profile. More-over, we reproduce these results through auxiliary field formalism in this specific higher curvature gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  3. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].

  5. L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Alishahiha and R. Fareghbal, Boundary CFT from holography, Phys. Rev. D 84 (2011) 106002 [arXiv:1108.5607] [INSPIRE].

    ADS  Google Scholar 

  11. I. Affleck and A.W. Ludwig, Universal noninteger ’ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. R. Jackiw, S. Templeton and S. Deser, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975.

    Article  ADS  Google Scholar 

  15. S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [INSPIRE].

    Article  ADS  Google Scholar 

  18. E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [INSPIRE].

    Article  ADS  Google Scholar 

  20. I. Gullu, T.C. Sisman and B. Tekin, Born-Infeld extension of new massive gravity, Class. Quant. Grav. 27 (2010) 162001 [arXiv:1003.3935] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. H. Lü and C. Pope, Critical gravity in four dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].

    Article  ADS  Google Scholar 

  22. H. Lü, Y. Pang and C. Pope, Conformal gravity and extensions of critical gravity, Phys. Rev. D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].

    ADS  Google Scholar 

  23. S. Deser et al., Critical points of D-dimensional extended gravities, Phys. Rev. D 83 (2011) 061502 [arXiv:1101.4009] [INSPIRE].

    ADS  Google Scholar 

  24. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

    Article  ADS  Google Scholar 

  25. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  26. N. Ogawa and T. Takayanagi, Higher derivative corrections to holographic entanglement entropy for AdS solitons, JHEP 10 (2011) 147 [arXiv:1107.4363] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. E.A. Bergshoeff, O. Hohm and P.K. Townsend, On higher derivatives in 3D gravity and higher spin gauge theories, Annals Phys. 325 (2010) 1118 [arXiv:0911.3061] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. E. Bergshoeff, O. Hohm and P. Townsend, On massive gravitons in 2 + 1 dimensions, J. Phys. Conf. Ser. 229 (2010) 012005 [arXiv:0912.2944] [INSPIRE].

    Article  ADS  Google Scholar 

  30. Y. Kwon, S. Nam, J.-D. Park and S.-H. Yi, Holographic renormalization and stress tensors in new massive gravity, JHEP 11 (2011) 029 [arXiv:1106.4609] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. Y. Kwon, S. Nam, J.-D. Park and S.-H. Yi, Quasi normal modes for new type black holes in new massive gravity, Class. Quant. Grav. 28 (2011) 145006 [arXiv:1102.0138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Nam, J.-D. Park and S.-H. Yi, AdS black hole solutions in the extended new massive gravity, JHEP 07 (2010) 058 [arXiv:1005.1619] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Nam, J.-D. Park and S.-H. Yi, Mass and angular momentum of black holes in new massive gravity, Phys. Rev. D 82 (2010) 124049 [arXiv:1009.1962] [INSPIRE].

    ADS  Google Scholar 

  34. J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].

  35. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    Article  Google Scholar 

  36. T. Azeyanagi, A. Karch, T. Takayanagi and E.G. Thompson, Holographic calculation of boundary entropy, JHEP 03 (2008) 054 [arXiv:0712.1850] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407.

    MathSciNet  ADS  Google Scholar 

  38. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. Y. Liu and Y.-w. Sun, Note on new massive gravity in AdS 3, JHEP 04 (2009) 106 [arXiv:0903.0536] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Chiodaroli, E. D’Hoker and M. Gutperle, Simple holographic duals to boundary CFTs, JHEP 02 (2012) 005 [arXiv:1111.6912] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Google Scholar 

  46. J. Oliva, D. Tempo and R. Troncoso, Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity, JHEP 07 (2009) 011 [arXiv:0905.1545] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Perez, D. Tempo and R. Troncoso, Gravitational solitons, hairy black holes and phase transitions in BHT massive gravity, JHEP 07 (2011) 093 [arXiv:1106.4849] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].

  49. S.-J. Hyun, W.-J. Jang, J.-H. Jeong and S.-H. Yi, Noncritical Einstein-Weyl gravity and the AdS/CFT correspondence, JHEP 01 (2012) 054 [arXiv:1111.1175] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. R.R. Metsaev, Stückelberg approach to 6D conformal gravity, talk given at the workshop Supersymmetries and Quantum Symmetries, July 18-23, Dubna, Russia (2011).

  51. R. Metsaev, Ordinary-derivative formulation of conformal low spin fields, JHEP 01 (2012) 064 [arXiv:0707.4437] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Dae Park.

Additional information

ArXiv ePrint: 1201.1988

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, Y., Nam, S., Park, JD. et al. AdS/BCFT correspondence for higher curvature gravity: an example. J. High Energ. Phys. 2012, 119 (2012). https://doi.org/10.1007/JHEP06(2012)119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)119

Keywords

Navigation