Abstract
We consider the effects of higher curvature terms on a holographic dual description of boundary conformal field theory. Specifically, we consider three-dimensional gravity with a specific combination of Ricci tensor square and curvature scalar square, so called, new massive gravity. We show that a boundary entropy and an entanglement entropy are given by similar expressions with those of the Einstein gravity case when we introduce an effective Newton’s constant and an effective cosmological constant. We also show that the holographic g-theorem still holds in this extension, and we give some comments about the central charge dependence of boundary entropy in the holographic construction. In the same way, we consider new type black holes and comment on the boundary profile. More-over, we reproduce these results through auxiliary field formalism in this specific higher curvature gravity.
Similar content being viewed by others
References
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].
L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].
A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].
A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].
T. Takayanagi, Holographic dual of BCFT, Phys. Rev. Lett. 107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].
M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].
M. Alishahiha and R. Fareghbal, Boundary CFT from holography, Phys. Rev. D 84 (2011) 106002 [arXiv:1108.5607] [INSPIRE].
I. Affleck and A.W. Ludwig, Universal noninteger ’ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].
D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].
A. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [INSPIRE].
R. Jackiw, S. Templeton and S. Deser, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975.
S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].
W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [INSPIRE].
D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [INSPIRE].
E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].
A. Sinha, On the new massive gravity and AdS/CFT, JHEP 06 (2010) 061 [arXiv:1003.0683] [INSPIRE].
I. Gullu, T.C. Sisman and B. Tekin, Born-Infeld extension of new massive gravity, Class. Quant. Grav. 27 (2010) 162001 [arXiv:1003.3935] [INSPIRE].
H. Lü and C. Pope, Critical gravity in four dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].
H. Lü, Y. Pang and C. Pope, Conformal gravity and extensions of critical gravity, Phys. Rev. D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].
S. Deser et al., Critical points of D-dimensional extended gravities, Phys. Rev. D 83 (2011) 061502 [arXiv:1101.4009] [INSPIRE].
J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].
L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].
N. Ogawa and T. Takayanagi, Higher derivative corrections to holographic entanglement entropy for AdS solitons, JHEP 10 (2011) 147 [arXiv:1107.4363] [INSPIRE].
E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].
E.A. Bergshoeff, O. Hohm and P.K. Townsend, On higher derivatives in 3D gravity and higher spin gauge theories, Annals Phys. 325 (2010) 1118 [arXiv:0911.3061] [INSPIRE].
E. Bergshoeff, O. Hohm and P. Townsend, On massive gravitons in 2 + 1 dimensions, J. Phys. Conf. Ser. 229 (2010) 012005 [arXiv:0912.2944] [INSPIRE].
Y. Kwon, S. Nam, J.-D. Park and S.-H. Yi, Holographic renormalization and stress tensors in new massive gravity, JHEP 11 (2011) 029 [arXiv:1106.4609] [INSPIRE].
Y. Kwon, S. Nam, J.-D. Park and S.-H. Yi, Quasi normal modes for new type black holes in new massive gravity, Class. Quant. Grav. 28 (2011) 145006 [arXiv:1102.0138] [INSPIRE].
S. Nam, J.-D. Park and S.-H. Yi, AdS black hole solutions in the extended new massive gravity, JHEP 07 (2010) 058 [arXiv:1005.1619] [INSPIRE].
S. Nam, J.-D. Park and S.-H. Yi, Mass and angular momentum of black holes in new massive gravity, Phys. Rev. D 82 (2010) 124049 [arXiv:1009.1962] [INSPIRE].
J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE].
P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
T. Azeyanagi, A. Karch, T. Takayanagi and E.G. Thompson, Holographic calculation of boundary entropy, JHEP 03 (2008) 054 [arXiv:0712.1850] [INSPIRE].
J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407.
V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].
R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].
O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [INSPIRE].
M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].
S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].
Y. Liu and Y.-w. Sun, Note on new massive gravity in AdS 3, JHEP 04 (2009) 106 [arXiv:0903.0536] [INSPIRE].
M. Chiodaroli, E. D’Hoker and M. Gutperle, Simple holographic duals to boundary CFTs, JHEP 02 (2012) 005 [arXiv:1111.6912] [INSPIRE].
R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].
J. Oliva, D. Tempo and R. Troncoso, Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity, JHEP 07 (2009) 011 [arXiv:0905.1545] [INSPIRE].
A. Perez, D. Tempo and R. Troncoso, Gravitational solitons, hairy black holes and phase transitions in BHT massive gravity, JHEP 07 (2011) 093 [arXiv:1106.4849] [INSPIRE].
J. Maldacena, Einstein gravity from conformal gravity, arXiv:1105.5632 [INSPIRE].
S.-J. Hyun, W.-J. Jang, J.-H. Jeong and S.-H. Yi, Noncritical Einstein-Weyl gravity and the AdS/CFT correspondence, JHEP 01 (2012) 054 [arXiv:1111.1175] [INSPIRE].
R.R. Metsaev, Stückelberg approach to 6D conformal gravity, talk given at the workshop Supersymmetries and Quantum Symmetries, July 18-23, Dubna, Russia (2011).
R. Metsaev, Ordinary-derivative formulation of conformal low spin fields, JHEP 01 (2012) 064 [arXiv:0707.4437] [INSPIRE].
J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1201.1988
Rights and permissions
About this article
Cite this article
Kwon, Y., Nam, S., Park, JD. et al. AdS/BCFT correspondence for higher curvature gravity: an example. J. High Energ. Phys. 2012, 119 (2012). https://doi.org/10.1007/JHEP06(2012)119
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2012)119