Abstract
The mother functions for the eigenfunctions of the Koroteev-Shakirov version of quantum double-elliptic (Dell) Hamiltonians can be presented as infinite series in Miwa variables, very similar to the recent conjecture due to J. Shiraishi. Further studies should clear numerous remaining obstacles and thus solve the long-standing problem of explicitly constructing a Dell system, the top member of the Calogero-Moser-Ruijsenaars system, with the P Q-duality fully explicit at the elliptic level.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
H.W. Braden, A. Marshakov, A. Mironov and A. Morozov, On double elliptic integrable systems. 1. A Duality argument for the case of SU(2), Nucl. Phys.B 573 (2000) 553 [hep-th/9906240] [INSPIRE].
S.N.M. Ruijsenaars, Action Angle Maps and Scattering Theory for Some Finite Dimensional Integrable Systems. 1. The Pure Soliton Case, Commun. Math. Phys.115 (1988) 127 [INSPIRE].
V. Fock, Three Remarks on Group Invariants Related to Flat Connections, in Geometry and Integrable Models, P. Pyatov and S. Solodukhin eds., World Scientific (1995), p. 20.
V.V. Fock and A.A. Rosly, Poisson structure on moduli of flat connections on Riemann surfaces and r matrix, Am. Math. Soc. Transl.191 (1999) 67 [math/9802054] [INSPIRE].
V. Fock, A. Gorsky, N. Nekrasov and V. Rubtsov, Duality in integrable systems and gauge theories, JHEP07 (2000) 028 [hep-th/9906235] [INSPIRE].
A. Gorsky and V. Rubtsov, Dualities in integrable systems: Geometrical aspects, in Integrable structures of exactly solvable two-dimensional models of quantum field theory. Proceedings, NATO Advanced Research Workshop on dynamical symmetries of integrable quantum field theories and lattice models, Kiev, Ukraine, 25–30 September 2000, pp. 173–198 (2000) [hep-th/0103004] [INSPIRE].
A. Mironov, Seiberg-Witten theory and duality in integrable systems, in 34th Annual Winter School on Nuclear and Particle Physics (PNPI 2000), Gatchina, Russia, 14–20 February 2000 (2000) [hep-th/0011093] [INSPIRE].
A. Gorsky and A. Mironov, Integrable many body systems and gauge theories, hep-th/0011197 [INSPIRE].
A. Mironov and A. Morozov, Commuting Hamiltonians from Seiberg-Witten theta functions, Phys. Lett.B 475 (2000) 71 [hep-th/9912088] [INSPIRE].
A. Mironov and A. Morozov, Double elliptic systems: Problems and perspectives, in Proceedings, International Workshop on Supersymmetries and Quantum Symmetries (SQS’99), Moscow, Russia, 27–31 July 1999 (1999) [hep-th/0001168] [INSPIRE].
A. Mironov, Selfdual Hamiltonians as deformations of free systems, Theor. Math. Phys.129 (2001) 1581 [hep-th/0104253] [INSPIRE].
A. Mironov, Integrability in string/field theories and Hamiltonian flows in the space of physical systems, Theor. Math. Phys.135 (2003) 814 [hep-th/0205202] [INSPIRE].
A. Mironov and A. Morozov, p,q duality and Hamiltonian flows in the space of integrable systems or integrable systems as canonical transforms of the free ones, Phys. Lett.B 524 (2002) 217 [hep-th/0107114] [INSPIRE].
E. Mukhin, V. Tarasov, A. Varchenko, Bispectral and (\( \mathfrak{gl} \)N, \( \mathfrak{gl} \)M ) Dualities, math/0510364.
E.Mukhin, V.Tarasov, A.Varchenko, Bispectral and (\( \mathfrak{gl} \)N, \( \mathfrak{gl} \)M ) dualities, discrete versus differential, Adv. Math.218 (2008) 216 [math/0605172].
A. Mironov, A. Morozov, Y. Zenkevich and A. Zotov, Spectral Duality in Integrable Systems from AGT Conjecture, JETP Lett.97 (2013) 45 [arXiv:1204.0913] [INSPIRE].
A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral Duality Between Heisenberg Chain and Gaudin Model, Lett. Math. Phys.103 (2013) 299 [arXiv:1206.6349] [INSPIRE].
A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral dualities in XXZ spin chains and five dimensional gauge theories, JHEP12 (2013) 034 [arXiv:1307.1502] [INSPIRE].
L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-Branes, Toric Diagrams and Gauge Theory Duality, JHEP04 (2012) 105 [arXiv:1112.5228] [INSPIRE].
A. Mironov, A. Morozov and Y. Zenkevich, On elementary proof of AGT relations from six dimensions, Phys. Lett.B 756 (2016) 208 [arXiv:1512.06701] [INSPIRE].
A. Mironov, A. Morozov and Y. Zenkevich, Spectral duality in elliptic systems, six-dimensional gauge theories and topological strings, JHEP05 (2016) 121 [arXiv:1603.00304] [INSPIRE].
H. Awata, H. Kanno, A. Mironov, A. Morozov, K. Suetake and Y. Zenkevich, (q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces, JHEP03 (2018) 192 [arXiv:1712.08016] [INSPIRE].
G. Aminov, A. Mironov and A. Morozov, New non-linear equations and modular form expansion for double-elliptic Seiberg-Witten prepotential, Eur. Phys. J.C 76 (2016) 433 [arXiv:1606.05274] [INSPIRE].
G. Aminov, A. Mironov and A. Morozov, Modular properties of 6d (DELL) systems, JHEP11 (2017) 023 [arXiv:1709.04897] [INSPIRE].
H.W. Braden and T.J. Hollowood, The Curve of compactified 6-D gauge theories and integrable systems, JHEP12 (2003) 023 [hep-th/0311024] [INSPIRE].
G. Aminov, A. Mironov, A. Morozov and A. Zotov, Three-particle Integrable Systems with Elliptic Dependence on Momenta and Theta Function Identities, Phys. Lett.B 726 (2013) 802 [arXiv:1307.1465] [INSPIRE].
G. Aminov, H.W. Braden, A. Mironov, A. Morozov and A. Zotov, Seiberg-Witten curves and double-elliptic integrable systems, JHEP01 (2015) 033 [arXiv:1410.0698] [INSPIRE].
N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, in Proceedings, 16th International Congress on Mathematical Physics (ICMP09), Prague, Czech Republic, 3–8 August 2009, pp. 265–289 (2009) [DOI] [arXiv:0908.4052] [INSPIRE].
N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl.216 (2011) 69 [arXiv:1103.3919] [INSPIRE].
A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals, JHEP04 (2010) 040 [arXiv:0910.5670] [INSPIRE].
A. Mironov and A. Morozov, Nekrasov Functions from Exact BS Periods: The Case of SU(N ), J. Phys.A 43 (2010) 195401 [arXiv:0911.2396] [INSPIRE].
P. Koroteev and S. Shakirov, The Quantum DELL System, Lett. Math. Phys.110 (2020) 969 [arXiv:1906.10354] [INSPIRE].
M. Noumi and J. Shiraishi, A direct approach to the bispectral problem for the Ruijsenaars-Macdonald q-difference operators, arXiv:1206.5364.
H. Awata et al., Explicit examples of DIM constraints for network matrix models, JHEP07 (2016) 103 [arXiv:1604.08366] [INSPIRE].
R. Rimányi, A. Smirnov, A. Varchenko and Z. Zhou, 3d Mirror Symmetry and Elliptic Stable Envelopes, arXiv:1902.03677 [INSPIRE].
R. Rimányi, A. Smirnov, A. Varchenko and Z. Zhou, Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety, SIGMA15 (2019) 093 [arXiv:1906.00134] [INSPIRE].
A. Okounkov and A. Smirnov, Quantum difference equation for Nakajima varieties, arXiv:1602.09007 [INSPIRE].
M. Aganagic and A. Okounkov, Elliptic stable envelopes, arXiv:1604.00423 [INSPIRE].
Y. Saito, Elliptic Ding-Iohara Algebra and the Free Field Realization of the Elliptic Macdonald Operator, arXiv:1301.4912.
Y. Saito, Elliptic Ding-Iohara Algebra and Commutative Families of the Elliptic Macdonald Operator, SIGMA10 (2014) 021 [arXiv:1309.7094].
A. Iqbal, C. Kozcaz and S.-T. Yau, Elliptic Virasoro Conformal Blocks, arXiv:1511.00458 [INSPIRE].
F. Nieri, An elliptic Virasoro symmetry in 6d, Lett. Math. Phys.107 (2017) 2147 [arXiv:1511.00574] [INSPIRE].
A. Mironov, A. Morozov and Y. Zenkevich, Ding-Iohara-Miki symmetry of network matrix models, Phys. Lett.B 762 (2016) 196 [arXiv:1603.05467] [INSPIRE].
R. Lodin, F. Nieri and M. Zabzine, Elliptic modular double and 4d partition functions, J. Phys.A 51 (2018) 045402 [arXiv:1703.04614] [INSPIRE].
F. Nieri, Y. Pan and M. Zabzine, q-Virasoro modular triple, Commun. Math. Phys.366 (2019) 397 [arXiv:1710.07170] [INSPIRE].
S.V. Kerov, Hall-Littlewood functions and orthogonal polynomials Funct. Anal. App.25 (1991) 65.
A. Mironov and A. Morozov, Kerov functions revisited, arXiv:1811.01184 [INSPIRE].
A. Mironov and A. Morozov, Kerov functions for composite representations and Macdonald ideal, Nucl. Phys.B 944 (2019) 114641 [arXiv:1903.00773] [INSPIRE].
A. Mironov and A. Morozov, On Hamiltonians for Kerov functions, Eur. Phys. J.C 80 (2020) 277 [arXiv:1908.05176] [INSPIRE].
J. Shiraishi, Affine screening operators, affine Laumon spaces, and conjectures concerning non-stationary Ruijsenaars functions, J. Integrable Syst.4 (2019) xyz010 [arXiv:1903.07495].
P. Etingof and A. Varchenko, Traces of intertwiners for quantum groups and difference equations, I, math/9907181.
O. Babelon and D. Bernard, The sine-Gordon solitons as a N body problem, Phys. Lett.B 317 (1993) 363 [hep-th/9309154] [INSPIRE].
H. Airault, H. McKean and J. Moser, Rational and elliptic solutions of the Korteweg-De Vries equation and a related many-body problem, Commun. Pure Appl. Math.30 (1977) 95.
I. Krichever, Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Funct. Anal. Appl.14 (1980) 282.
T. Shiota, Calogero-Moser hierarchy and KP hierarchy, J. Math. Phys.35 (1994) 5844 [hep-th/9402021] [INSPIRE].
I. Krichever, O. Babelon, E. Billey and M. Talon, Spin generalization of the Calogero-Moser system and the matrix KP equation, hep-th/9411160 [INSPIRE].
I. Krichever and A. Zabrodin, Spin generalization of the Ruijsenaars-Schneider model, nonAbelian 2-D Toda chain and representations of Sklyanin algebra, Russ. Math. Surveys50 (1995) 1101 [hep-th/9505039] [INSPIRE].
H. Bateman and A. Erdelyi, Higher transcendental functions, vol. 3, McGraw-Hill Book Company, London (1955).
D. Mumford, Tata Lectures on Theta I, Birkhäuser, Boston (1983).
D. Mumford, Tata Lectures on Theta II, Birkhäuser, Boston (1984).
A. Erdélyi, Integraldarstellungen hyper-geometrischer Funktionen, Quart. J. Math.8 (1937) 267.
A. Morozov and L. Vinet, q hypergeometric functions in the formalism of free fields, Mod. Phys. Lett.A 8 (1993) 2891 [hep-th/9309026] [INSPIRE].
H. Awata, H. Kanno, A. Mironov and A. Morozov, Elliptic lift of the Shiraishi function as a candidate for the non-stationary double-elliptic function, to appear.
D. Gaiotto, Surface Operators in N = 2 4d Gauge Theories, JHEP11 (2012) 090 [arXiv:0911.1316] [INSPIRE].
D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys.13 (2009) 721 [arXiv:0807.3720] [INSPIRE].
A. Nedelin, S. Pasquetti and Y. Zenkevich, T [SU(N )] duality webs: mirror symmetry, spectral duality and gauge/CFT correspondences, JHEP02 (2019) 176 [arXiv:1712.08140] [INSPIRE].
Y. Yoshida and K. Sugiyama, Localization of 3d \( \mathcal{N} \) = 2 Supersymmetric Theories on S1× D2 , arXiv:1409.6713 [INSPIRE].
M. Bullimore, H.-C. Kim and P. Koroteev, Defects and Quantum Seiberg-Witten Geometry, JHEP05 (2015) 095 [arXiv:1412.6081] [INSPIRE].
Y. Zenkevich, Higgsed network calculus, arXiv:1812.11961 [INSPIRE].
M. Fukuda, Y. Ohkubo and J. Shiraishi, Generalized Macdonald Functions on Fock Tensor Spaces and Duality Formula for Changing Preferred Direction, arXiv:1903.05905 [INSPIRE].
M. Fukuda, Y. Ohkubo and J. Shiraishi, Non-stationary Ruijsenaars functions for κ = t−1/Nand intertwining operators of Ding-Iohara-Miki algebra, arXiv:2002.00243 [INSPIRE].
M. Fukuda, private communication.
H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the chain-saw quiver, JHEP06 (2011) 119 [arXiv:1105.0357] [INSPIRE].
B. Feigin, M. Finkelberg, A. Negut and R. Rybnikov, Yangians and cohomology rings of Laumon spaces, Sel. Math. New Ser.17 (2011) 573 [arXiv:0812.4656].
A. Braverman, B. Feigin, M. Finkelberg and L. Rybnikov, A Finite analog of the AGT relation I: F inite W -algebras and quasimaps’ spaces, Commun. Math. Phys.308 (2011) 457 [arXiv:1008.3655] [INSPIRE].
M. Finkelberg and R. Rybnikov, Quantization of Drinfeld Zastava, arXiv:1009.0676.
S. Nawata, Givental J-functions, Quantum integrable systems, AGT relation with surface operator, Adv. Theor. Math. Phys.19 (2015) 1277 [arXiv:1408.4132] [INSPIRE].
N. Nekrasov, BPS/CFT correspondence IV: σ-models and defects in gauge theory, Lett. Math. Phys.109 (2019) 579 [arXiv:1711.11011] [INSPIRE].
H. Awata and H. Kanno, Refined BPS state counting from Nekrasov’s formula and Macdonald functions, Int. J. Mod. Phys.A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].
H. Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, American Mathematical Society (1999).
U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP05 (2003) 054 [hep-th/0211108] [INSPIRE].
L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys.94 (2010) 87 [arXiv:1005.4469] [INSPIRE].
C. Kozcaz, S. Pasquetti, F. Passerini and N. Wyllard, Affine sl(N ) conformal blocks from N = 2 SU(N ) gauge theories, JHEP01 (2011) 045 [arXiv:1008.1412] [INSPIRE].
A. Braverman, Instanton counting via affine Lie algebras I: Equivariant J-functions of (affine) flag manifolds and Whittaker vectors, math/0401409.
A. Braverman and P. Etingof, Instanton counting via affine Lie algebras II: from Whittaker vectors to the Seiberg-Witten prepotential, math/0409441.
S. Jeong, Splitting of surface defect partition functions and integrable systems, Nucl. Phys.B 938 (2019) 775 [arXiv:1709.04926] [INSPIRE].
S. Jeong and N. Nekrasov, Opers, surface defects and Yang-Yang functional, arXiv:1806.08270 [INSPIRE].
H. Awata and Y. Yamada, Five-dimensional AGT Conjecture and the Deformed Virasoro Algebra, JHEP01 (2010) 125 [arXiv:0910.4431] [INSPIRE].
K. Maruyoshi and M. Taki, Deformed Prepotential, Quantum Integrable System and Liouville Field Theory, Nucl. Phys.B 841 (2010) 388 [arXiv:1006.4505] [INSPIRE].
A. Marshakov, A. Mironov and A. Morozov, On AGT Relations with Surface Operator Insertion and Stationary Limit of Beta-Ensembles, J. Geom. Phys.61 (2011) 1203 [arXiv:1011.4491] [INSPIRE].
H. Awata, H. Fuji, H. Kanno, M. Manabe and Y. Yamada, Localization with a Surface Operator, Irregular Conformal Blocks and Open Topological String, Adv. Theor. Math. Phys.16 (2012) 725 [arXiv:1008.0574] [INSPIRE].
N. Wyllard, Instanton partition functions in N = 2 SU(N ) gauge theories with a general surface operator and their W-algebra duals, JHEP02 (2011) 114 [arXiv:1012.1355] [INSPIRE].
E. Frenkel, S. Gukov and J. Teschner, Surface Operators and Separation of Variables, JHEP01 (2016) 179 [arXiv:1506.07508] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1912.12897
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Awata, H., Kanno, H., Mironov, A. et al. On a complete solution of the quantum Dell system. J. High Energ. Phys. 2020, 212 (2020). https://doi.org/10.1007/JHEP04(2020)212
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2020)212