Abstract
Quantum chromodynamics is the theory of the strong interaction between quarks and gluons; the coupling strength of the interaction, αS, is the least precisely-known of all interactions in nature. An extraction of the strong coupling from the radiation pattern within jets would provide a complementary approach to conventional extractions from jet production rates and hadronic event shapes, and would be a key achievement of jet substructure at the Large Hadron Collider (LHC). Presently, the relative fraction of quark and gluon jets in a sample is the limiting factor in such extractions, as this fraction is degenerate with the value of αS for the most well-understood observables. To overcome this limitation, we apply recently proposed techniques to statistically demix multiple mixtures of jets and obtain purified quark and gluon distributions based on an operational definiton. We illustrate that studying quark and gluon jet substructure separately can significantly improve the sensitivity of such extractions of the strong coupling. We also discuss how using machine learning techniques or infrared- and collinear-unsafe information can improve the demixing performance without the loss of theoretical control. While theoretical research is required to connect the extract topics with the quark and gluon objects in cross section calculations, our study illustrates the potential of demixing to reduce the dominant uncertainty for the αS extraction from jet substructure at the LHC.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
X. Chen, T. Gehrmann, E.W.N. Glover, A. Huss, B. Mistlberger and A. Pelloni, Fully Differential Higgs Boson Production to Third Order in QCD, Phys. Rev. Lett. 127 (2021) 072002 [arXiv:2102.07607] [INSPIRE].
Flavour Lattice Averaging Group collaboration, FLAG Review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C 80 (2020) 113 [arXiv:1902.08191] [INSPIRE].
Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021, Eur. Phys. J. C 82 (2022) 869 [arXiv:2111.09849] [INSPIRE].
R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N3LL with Power Corrections and a Precision Global Fit for αs(mZ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].
ALEPH collaboration, Studies of QCD at e+e− centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].
DELPHI collaboration, Measurement of event shape and inclusive distributions at \( \sqrt{s} \) = 130 GeV and 136 GeV, Z. Phys. C 73 (1997) 229 [INSPIRE].
DELPHI collaboration, The Measurement of αS from event shapes with the DELPHI detector at the highest LEP energies, Eur. Phys. J. C 37 (2004) 1 [hep-ex/0406011] [INSPIRE].
L3 collaboration, Studies of hadronic event structure and comparisons with QCD models at the Z0 resonance, Z. Phys. C 55 (1992) 39 [INSPIRE].
OPAL collaboration, Measurement of event shape distributions and moments in e+e− → hadrons at 91–209 GeV and a determination of αS, Eur. Phys. J. C 40 (2005) 287 [hep-ex/0503051] [INSPIRE].
SLD collaboration, Measurement of \( {\alpha}_S\left({m}_Z^2\right) \) from hadronic event observables at the Z0 resonance, Phys. Rev. D 51 (1995) 962 [hep-ex/9501003] [INSPIRE].
J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report in 10th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2017) Les Houches France, June 5–23 2017 [arXiv:1803.07977] [INSPIRE].
G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].
A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].
R. Kogler et al., Jet Substructure at the Large Hadron Collider: Experimental Review, Rev. Mod. Phys. 91 (2019) 045003 [arXiv:1803.06991] [INSPIRE].
A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].
C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].
C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].
S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after Soft Drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].
S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].
Z.-B. Kang, K. Lee, X. Liu and F. Ringer, The groomed and ungroomed jet mass distribution for inclusive jet production at the LHC, JHEP 10 (2018) 137 [arXiv:1803.03645] [INSPIRE].
Z.-B. Kang, K. Lee, X. Liu and F. Ringer, Soft drop groomed jet angularities at the LHC, Phys. Lett. B 793 (2019) 41 [arXiv:1811.06983] [INSPIRE].
ATLAS collaboration, Measurement of the Soft-Drop Jet Mass in pp Collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS Detector, Phys. Rev. Lett. 121 (2018) 092001 [arXiv:1711.08341] [INSPIRE].
ATLAS collaboration, Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 101 (2020) 052007 [arXiv:1912.09837] [INSPIRE].
CMS collaboration, Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2018) 113 [arXiv:1807.05974] [INSPIRE].
CMS collaboration, Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions, JHEP 01 (2022) 188 [arXiv:2109.03340] [INSPIRE].
E.M. Metodiev and J. Thaler, Jet Topics: Disentangling Quarks and Gluons at Colliders, Phys. Rev. Lett. 120 (2018) 241602 [arXiv:1802.00008] [INSPIRE].
P.T. Komiske, E.M. Metodiev and J. Thaler, An operational definition of quark and gluon jets, JHEP 11 (2018) 059 [arXiv:1809.01140] [INSPIRE].
ATLAS collaboration, Properties of jet fragmentation using charged particles measured with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 100 (2019) 052011 [arXiv:1906.09254] [INSPIRE].
P.T. Komiske, S. Kryhin and J. Thaler, Disentangling quarks and gluons in CMS open data, Phys. Rev. D 106 (2022) 094021 [arXiv:2205.04459] [INSPIRE].
J. Brewer, J. Thaler and A.P. Turner, Data-driven quark and gluon jet modification in heavy-ion collisions, Phys. Rev. C 103 (2021) L021901 [arXiv:2008.08596] [INSPIRE].
Y. Ying, J. Brewer, Y. Chen and Y.-J. Lee, Data-driven extraction of the substructure of quark and gluon jets in proton-proton and heavy-ion collisions, MITHIG-TH-22-001 (2022) [arXiv:2204.00641] [INSPIRE].
B.M. Dillon, D.A. Faroughy and J.F. Kamenik, Uncovering latent jet substructure, Phys. Rev. D 100 (2019) 056002 [arXiv:1904.04200] [INSPIRE].
B.M. Dillon, D.A. Faroughy, J.F. Kamenik and M. Szewc, Learning the latent structure of collider events, JHEP 10 (2020) 206 [arXiv:2005.12319] [INSPIRE].
E. Alvarez, F. Lamagna and M. Szewc, Topic Model for four-top at the LHC, JHEP 01 (2020) 049 [arXiv:1911.09699] [INSPIRE].
D.M. Blei, Probabilistic topic models, Communications of the ACM 55 (2012) 77.
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
EnergyFlow, https://energyflow.network.
P. Komiske, E. Metodiev and J. Thaler, Pythia8 quark and gluon jets for energy flow, (2019) [Zenodo].
J. Gallicchio and M.D. Schwartz, Pure Samples of Quark and Gluon Jets at the LHC, JHEP 10 (2011) 103 [arXiv:1104.1175] [INSPIRE].
ATLAS collaboration, Measurement of jet charge in dijet events from \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052003 [arXiv:1509.05190] [INSPIRE].
ATLAS collaboration, Measurement of the charged-particle multiplicity inside jets from \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 76 (2016) 322 [arXiv:1602.00988] [INSPIRE].
S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].
S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].
D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].
S. Bright-Thonney and B. Nachman, Investigating the Topology Dependence of Quark and Gluon Jets, JHEP 03 (2019) 098 [arXiv:1810.05653] [INSPIRE].
P.T. Komiske, E.M. Metodiev and J. Thaler, Energy Flow Networks: Deep Sets for Particle Jets, JHEP 01 (2019) 121 [arXiv:1810.05165] [INSPIRE].
M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov and A. Smola, Deep Sets, arXiv:1703.06114.
F. Chollet, Keras, https://github.com/fchollet/keras (2017).
M. Abadi et al., TensorFlow: A system for large-scale machine learning, in OSDI, Savannah U.S.A., November 2–4 2016, pp. 265–283 [arXiv:1605.08695].
C. Frye, A.J. Larkoski, J. Thaler and K. Zhou, Casimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting Observables, JHEP 09 (2017) 083 [arXiv:1704.06266] [INSPIRE].
P. Virtanen et al., SciPy 1.0–Fundamental Algorithms for Scientific Computing in Python, Nature Meth. 17 (2020) 261 [arXiv:1907.10121] [INSPIRE].
I.W. Stewart and X. Yao, Pure quark and gluon observables in collinear drop, JHEP 09 (2022) 120 [arXiv:2203.14980] [INSPIRE].
H. Chen, I. Moult, X. Zhang and H.X. Zhu, Rethinking jets with energy correlators: Tracks, resummation, and analytic continuation, Phys. Rev. D 102 (2020) 054012 [arXiv:2004.11381] [INSPIRE].
A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Nonperturbative Corrections to Soft Drop Jet Mass, JHEP 12 (2019) 002 [arXiv:1906.11843] [INSPIRE].
A. Pathak, I.W. Stewart, V. Vaidya and L. Zoppi, EFT for Soft Drop Double Differential Cross Section, JHEP 04 (2021) 032 [arXiv:2012.15568] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].
M. Czakon, A. Mitov and R. Poncelet, Next-to-Next-to-Leading Order Study of Three-Jet Production at the LHC, Phys. Rev. Lett. 127 (2021) 152001 [arXiv:2106.05331] [INSPIRE].
X. Chen, T. Gehrmann, E.W.N. Glover, A. Huss and J. Mo, NNLO QCD corrections in full colour for jet production observables at the LHC, JHEP 09 (2022) 025 [arXiv:2204.10173] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2206.10642
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
LeBlanc, M., Nachman, B. & Sauer, C. Going off topics to demix quark and gluon jets in αS extractions. J. High Energ. Phys. 2023, 150 (2023). https://doi.org/10.1007/JHEP02(2023)150
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2023)150