Abstract
The selection of jets in heavy-ion collisions based on their pT after jet quenching is known to bias towards jets that lost little energy in the quark-gluon plasma. In this work, we study and quantify the impact of this selection bias on jet substructure observables so as to isolate effects caused by the modification of the substructure of jets by quenching. We do so at first in a simplified Monte Carlo study in which it is possible to identify the same jet before and after quenching. We show explicitly that jets selected based on their quenched (i.e. observable) pT have substantially smaller fractional energy loss than those selected based on the pT that they would have had in the absence of any quenching. This selection bias has a large impact on jet structure and substructure observables. As an example, we consider the angular separation ∆R of the hardest splitting in each jet, and find that the ∆R distribution of the (biased) sample of jets selected based upon their quenched pT is almost unmodified by quenching. In contrast, quenching causes dramatic modifications to the ∆R distribution of a sample of jets selected based upon their unquenched pT, with a significant enhancement at larger ∆R coming from the soft particles originating from the wake of the jet in the quark-gluon plasma. The jets which contribute to this enhancement are those which have lost the most energy and which were, therefore, left out of the sample selected after quenching. In a more realistic study, we then show that the same qualitative effects can all be observed in Z+jet events. Selecting jets in such events based on either the jet pT or the Z-boson pT provides an experimentally accessible way to quantify the effects of selection biases in jet observables and separate them from the modification of jet substructure caused by quenching. Selecting Z+jet events based upon the jet pT yields a ∆R distribution that appears almost unmodified whereas selecting Z+jet events based upon the Z-boson pT reveals a significant modification to the ∆R-distribution caused by quenching, once again arising from the wakes of those jets that lose more energy.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
STAR collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].
PHENIX collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].
ATLAS collaboration, Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.77 TeV with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].
CMS collaboration, Observation and studies of jet quenching in Pb-Pb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].
ALICE collaboration, Measurement of jet suppression in central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 746 (2015) 1 [arXiv:1502.01689] [INSPIRE].
J. Casalderrey-Solana and C.A. Salgado, Introductory lectures on jet quenching in heavy ion collisions, Acta Phys. Polon. B 38 (2007) 3731 [arXiv:0712.3443] [INSPIRE].
D. d’Enterria, Jet quenching, Landolt-Bornstein 23 (2010) 471 [arXiv:0902.2011] [INSPIRE].
U.A. Wiedemann, Jet quenching in heavy ion collisions, Landolt-Bornstein 23 (2010) 521 [arXiv:0908.2306] [INSPIRE].
A. Majumder and M. Van Leeuwen, The theory and phenomenology of perturbative QCD based jet quenching, Prog. Part. Nucl. Phys. 66 (2011) 41 [arXiv:1002.2206] [INSPIRE].
Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].
M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].
W. Busza, K. Rajagopal and W. van der Schee, Heavy ion collisions: the big picture, and the big questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].
B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to non-Abelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].
N. Armesto, C.A. Salgado and U.A. Wiedemann, Medium induced gluon radiation off massive quarks fills the dead cone, Phys. Rev. D 69 (2004) 114003 [hep-ph/0312106] [INSPIRE].
S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].
J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].
C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].
H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].
P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. D 79 (2009) 125015 [arXiv:0810.1985] [INSPIRE].
J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, Cambridge University Press, Cambridge, U.K. (2014) [arXiv:1101.0618] [INSPIRE].
J. Casalderrey-Solana, E.V. Shuryak and D. Teaney, Conical flow induced by quenched QCD jets, J. Phys. Conf. Ser. 27 (2005) 22 [hep-ph/0411315] [INSPIRE].
R.B. Neufeld, B. Müller and J. Ruppert, Sonic Mach cones induced by fast partons in a perturbative quark-gluon plasma, Phys. Rev. C 78 (2008) 041901 [arXiv:0802.2254] [INSPIRE].
B. Betz, J. Noronha, G. Torrieri, M. Gyulassy, I. Mishustin and D.H. Rischke, Universality of the diffusion wake from stopped and punch-through jets in heavy-ion collisions, Phys. Rev. C 79 (2009) 034902 [arXiv:0812.4401] [INSPIRE].
J. Casalderrey-Solana, D. Gulhan, G. Milhano, D. Pablos and K. Rajagopal, Angular structure of jet quenching within a hybrid strong/weak coupling model, JHEP 03 (2017) 135 [arXiv:1609.05842] [INSPIRE].
Y. Tachibana, N.-B. Chang and G.-Y. Qin, Full jet in quark-gluon plasma with hydrodynamic medium response, Phys. Rev. C 95 (2017) 044909 [arXiv:1701.07951] [INSPIRE].
JETSCAPE collaboration, Hydrodynamic response to jets with a source based on causal diffusion, Nucl. Phys. A 1005 (2021) 121920 [arXiv:2002.12250] [INSPIRE].
J. Casalderrey-Solana, J.G. Milhano, D. Pablos, K. Rajagopal and X. Yao, Jet wake from linearized hydrodynamics, JHEP 05 (2021) 230 [arXiv:2010.01140] [INSPIRE].
F.A. Dreyer, G.P. Salam and G. Soyez, The Lund jet plane, JHEP 12 (2018) 064 [arXiv:1807.04758] [INSPIRE].
H.A. Andrews et al., Novel tools and observables for jet physics in heavy-ion collisions, J. Phys. G 47 (2020) 065102 [arXiv:1808.03689] [INSPIRE].
Y. Mehtar-Tani and K. Tywoniuk, Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung, JHEP 04 (2017) 125 [arXiv:1610.08930] [INSPIRE].
J. Casalderrey-Solana, G. Milhano, D. Pablos and K. Rajagopal, Modification of jet substructure in heavy ion collisions as a probe of the resolution length of quark-gluon plasma, JHEP 01 (2020) 044 [arXiv:1907.11248] [INSPIRE].
Y. Mehtar-Tani, A. Soto-Ontoso and K. Tywoniuk, Dynamical grooming of QCD jets, Phys. Rev. D 101 (2020) 034004 [arXiv:1911.00375] [INSPIRE].
L. Apolinário, A. Cordeiro and K. Zapp, Time reclustering for jet quenching studies, Eur. Phys. J. C 81 (2021) 561 [arXiv:2012.02199] [INSPIRE].
G. Milhano, U.A. Wiedemann and K.C. Zapp, Sensitivity of jet substructure to jet-induced medium response, Phys. Lett. B 779 (2018) 409 [arXiv:1707.04142] [INSPIRE].
CMS collaboration, First measurement of large area jet transverse momentum spectra in heavy-ion collisions, JHEP 05 (2021) 284 [arXiv:2102.13080] [INSPIRE].
A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].
M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].
A.J. Larkoski, S. Marzani and J. Thaler, Sudakov safety in perturbative QCD, Phys. Rev. D 91 (2015) 111501 [arXiv:1502.01719] [INSPIRE].
ATLAS collaboration, Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 101 (2020) 052007 [arXiv:1912.09837] [INSPIRE].
ATLAS collaboration, Properties of g → b\( \overline{b} \) at small opening angles in pp collisions with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 99 (2019) 052004 [arXiv:1812.09283] [INSPIRE].
CMS collaboration, Measurement of jet substructure observables in t\( \overline{t} \) events from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 98 (2018) 092014 [arXiv:1808.07340] [INSPIRE].
J. Mulligan and M. Ploskon, Identifying groomed jet splittings in heavy-ion collisions, Phys. Rev. C 102 (2020) 044913 [arXiv:2006.01812] [INSPIRE].
Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett. 106 (2011) 122002 [arXiv:1009.2965] [INSPIRE].
Y.-T. Chien and I. Vitev, Probing the hardest branching within jets in heavy-ion collisions, Phys. Rev. Lett. 119 (2017) 112301 [arXiv:1608.07283] [INSPIRE].
N.-B. Chang, S. Cao and G.-Y. Qin, Probing medium-induced jet splitting and energy loss in heavy-ion collisions, Phys. Lett. B 781 (2018) 423 [arXiv:1707.03767] [INSPIRE].
Y.-T. Chien and R. Kunnawalkam Elayavalli, Probing heavy ion collisions using quark and gluon jet substructure, arXiv:1803.03589 [INSPIRE].
P. Caucal, E. Iancu and G. Soyez, Deciphering the zg distribution in ultrarelativistic heavy ion collisions, JHEP 10 (2019) 273 [arXiv:1907.04866] [INSPIRE].
CMS collaboration, Measurement of the splitting function in pp and Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 120 (2018) 142302 [arXiv:1708.09429] [INSPIRE].
CMS collaboration, Measurement of the groomed jet mass in Pb-Pb and pp collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 10 (2018) 161 [arXiv:1805.05145] [INSPIRE].
ALICE collaboration, Measurement of the groomed jet radius and momentum splitting fraction in pp and Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, arXiv:2107.12984 [INSPIRE].
ALICE collaboration, Exploration of jet substructure using iterative declustering in pp and Pb-Pb collisions at LHC energies, Phys. Lett. B 802 (2020) 135227 [arXiv:1905.02512] [INSPIRE].
STAR collaboration, Jet shapes and fragmentation functions in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV in STAR, Nucl. Phys. A 1005 (2021) 121808 [arXiv:2002.06217] [INSPIRE].
T. Renk, Biased showers: a common conceptual framework for the interpretation of high-PT observables in heavy-ion collisions, Phys. Rev. C 88 (2013) 054902 [arXiv:1212.0646] [INSPIRE].
J.G. Milhano and K.C. Zapp, Origins of the di-jet asymmetry in heavy ion collisions, Eur. Phys. J. C 76 (2016) 288 [arXiv:1512.08107] [INSPIRE].
M. Spousta and B. Cole, Interpreting single jet measurements in Pb-Pb collisions at the LHC, Eur. Phys. J. C 76 (2016) 50 [arXiv:1504.05169] [INSPIRE].
K. Rajagopal, A.V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].
J. Brewer, K. Rajagopal, A. Sadofyev and W. Van Der Schee, Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma, JHEP 02 (2018) 015 [arXiv:1710.03237] [INSPIRE].
J. Brewer, A. Sadofyev and W. van der Schee, Jet shape modifications in holographic dijet systems, Phys. Lett. B 820 (2021) 136492 [arXiv:1809.10695] [INSPIRE].
J. Casalderrey-Solana, Z. Hulcher, G. Milhano, D. Pablos and K. Rajagopal, Simultaneous description of hadron and jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 051901 [arXiv:1808.07386] [INSPIRE].
P. Caucal, E. Iancu, A.H. Mueller and G. Soyez, Nuclear modification factors for jet fragmentation, JHEP 10 (2020) 204 [arXiv:2005.05852] [INSPIRE].
J. Brewer, J.G. Milhano and J. Thaler, Sorting out quenched jets, Phys. Rev. Lett. 122 (2019) 222301 [arXiv:1812.05111] [INSPIRE].
A. Takacs and K. Tywoniuk, Quenching effects in the cumulative jet spectrum, JHEP 10 (2021) 038 [arXiv:2103.14676] [INSPIRE].
Y.-L. Du, D. Pablos and K. Tywoniuk, Deep learning jet modifications in heavy-ion collisions, JHEP 03 (2021) 206 [arXiv:2012.07797] [INSPIRE].
Y.-L. Du, D. Pablos and K. Tywoniuk, Jet tomography in heavy-ion collisions with deep learning, Phys. Rev. Lett. 128 (2022) 012301 [arXiv:2106.11271] [INSPIRE].
X.-N. Wang, Z. Huang and I. Sarcevic, Jet quenching in the opposite direction of a tagged photon in high-energy heavy ion collisions, Phys. Rev. Lett. 77 (1996) 231 [hep-ph/9605213] [INSPIRE].
H. Zhang, J.F. Owens, E. Wang and X.-N. Wang, Tomography of high-energy nuclear collisions with photon-hadron correlations, Phys. Rev. Lett. 103 (2009) 032302 [arXiv:0902.4000] [INSPIRE].
R.B. Neufeld, I. Vitev and B.W. Zhang, The physics of Z0/γ*-tagged jets at the LHC, Phys. Rev. C 83 (2011) 034902 [arXiv:1006.2389] [INSPIRE].
H. Li, F. Liu, G.-L. Ma, X.-N. Wang and Y. Zhu, Mach cone induced by γ-triggered jets in high-energy heavy-ion collisions, Phys. Rev. Lett. 106 (2011) 012301 [arXiv:1006.2893] [INSPIRE].
R.B. Neufeld and I. Vitev, The Z0-tagged jet event asymmetry in heavy-ion collisions at the CERN Large Hadron Collider, Phys. Rev. Lett. 108 (2012) 242001 [arXiv:1202.5556] [INSPIRE].
W. Dai, I. Vitev and B.-W. Zhang, Momentum imbalance of isolated photon-tagged jet production at RHIC and LHC, Phys. Rev. Lett. 110 (2013) 142001 [arXiv:1207.5177] [INSPIRE].
X.-N. Wang and Y. Zhu, Medium modification of γ-jets in high-energy heavy-ion collisions, Phys. Rev. Lett. 111 (2013) 062301 [arXiv:1302.5874] [INSPIRE].
J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, Predictions for boson-jet observables and fragmentation function ratios from a hybrid strong/weak coupling model for jet quenching, JHEP 03 (2016) 053 [arXiv:1508.00815] [INSPIRE].
W. Chen, S. Cao, T. Luo, L.-G. Pang and X.-N. Wang, Effects of jet-induced medium excitation in γ-hadron correlation in A + A collisions, Phys. Lett. B 777 (2018) 86 [arXiv:1704.03648] [INSPIRE].
T. Luo, S. Cao, Y. He and X.-N. Wang, Multiple jets and γ-jet correlation in high-energy heavy-ion collisions, Phys. Lett. B 782 (2018) 707 [arXiv:1803.06785] [INSPIRE].
S.-L. Zhang, T. Luo, X.-N. Wang and B.-W. Zhang, Z+jet correlation with NLO-matched parton-shower and jet-medium interaction in high-energy nuclear collisions, Phys. Rev. C 98 (2018) 021901 [arXiv:1804.11041] [INSPIRE].
W. Chen, S. Cao, T. Luo, L.-G. Pang and X.-N. Wang, Medium modification of γ-jet fragmentation functions in Pb-Pb collisions at LHC, Phys. Lett. B 810 (2020) 135783 [arXiv:2005.09678] [INSPIRE].
Z.-B. Kang, I. Vitev and H. Xing, Vector-boson-tagged jet production in heavy ion collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 96 (2017) 014912 [arXiv:1702.07276] [INSPIRE].
CMS collaboration, Study of jet quenching with isolated-photon+jet correlations in Pb-Pb and pp collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Lett. B 785 (2018) 14 [arXiv:1711.09738] [INSPIRE].
CMS collaboration, Study of jet quenching with Z+jet correlations in Pb-Pb and pp collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 119 (2017) 082301 [arXiv:1702.01060] [INSPIRE].
CMS collaboration, Jet shapes of isolated photon-tagged jets in Pb-Pb and pp collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 122 (2019) 152001 [arXiv:1809.08602] [INSPIRE].
CMS collaboration, Observation of medium-induced modifications of jet fragmentation in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV using isolated photon-tagged jets, Phys. Rev. Lett. 121 (2018) 242301 [arXiv:1801.04895] [INSPIRE].
CMS collaboration, Using Z boson events to study parton-medium interactions in Pb-Pb collisions, arXiv:2103.04377 [INSPIRE].
ATLAS collaboration, Measurement of photon-jet transverse momentum correlations in 5.02 TeV Pb-Pb and pp collisions with ATLAS, Phys. Lett. B 789 (2019) 167 [arXiv:1809.07280] [INSPIRE].
ATLAS collaboration, Comparison of fragmentation functions for jets dominated by light quarks and gluons from pp and Pb-Pb collisions in ATLAS, Phys. Rev. Lett. 123 (2019) 042001 [arXiv:1902.10007] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].
J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, A hybrid strong/weak coupling approach to jet quenching, JHEP 10 (2014) 019 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
Z. Hulcher, D. Pablos and K. Rajagopal, Resolution effects in the hybrid strong/weak coupling model, JHEP 03 (2018) 010 [arXiv:1707.05245] [INSPIRE].
J. Casalderrey-Solana, G. Milhano, D. Pablos and K. Rajagopal, Jet substructure modification probes the QGP resolution length, Nucl. Phys. A 1005 (2021) 121904 [arXiv:2002.09193] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
P.M. Chesler and K. Rajagopal, Jet quenching in strongly coupled plasma, Phys. Rev. D 90 (2014) 025033 [arXiv:1402.6756] [INSPIRE].
P.M. Chesler and K. Rajagopal, On the evolution of jet energy and opening angle in strongly coupled plasma, JHEP 05 (2016) 098 [arXiv:1511.07567] [INSPIRE].
R. Kunnawalkam Elayavalli and K.C. Zapp, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions, JHEP 07 (2017) 141 [arXiv:1707.01539] [INSPIRE].
K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].
Z. Yang, W. Chen, Y. He, W. Ke, L. Pang and X.-N. Wang, Search for the elusive jet-induced diffusion wake in Z/γ-jets with 2D jet tomography in high-energy heavy-ion collisions, Phys. Rev. Lett. 127 (2021) 082301 [arXiv:2101.05422] [INSPIRE].
D. Pablos, Jet suppression from a small to intermediate to large radius, Phys. Rev. Lett. 124 (2020) 052301 [arXiv:1907.12301] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2110.13159
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Brewer, J., Brodsky, Q. & Rajagopal, K. Disentangling jet modification in jet simulations and in Z+jet data. J. High Energ. Phys. 2022, 175 (2022). https://doi.org/10.1007/JHEP02(2022)175
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2022)175