Abstract
We show that the minimal D = 5, \( \mathcal{N} \) = 2 gauged supergravity set-up may encode naturally the recently proposed clockwork mechanism. The minimal embedding requires one vector multiplet in addition to the supergravity multiplet and the clockwork scalar is identified with the scalar in the vector multiplet. The scalar has a two-parameter potential and it can accommodate the clockwork, the Randall-Sundrum and a no-scale model with a flat potential, depending on the values of the parameters. The continuous clockwork background breaks half of the original supersymmetries, leaving a D = 4, \( \mathcal{N} \) = 1 theory on the boundaries. We also show that the generated hierarchy by the clockwork is not exponential but rather power law. The reason is that four-dimensional Planck scale has a power-law dependence on the compactification radius, whereas the corresponding KK spectrum depends on the logarithm of the latter.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP 01 (2016) 149 [arXiv:1511.00132] [INSPIRE].
D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].
G.F. Giudice and M. McCullough, A clockwork theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].
A. Kehagias and A. Riotto, Clockwork inflation, Phys. Lett. B 767 (2017) 73 [arXiv:1611.03316] [INSPIRE].
M. Farina, D. Pappadopulo, F. Rompineve and A. Tesi, The photo-philic QCD axion, JHEP 01 (2017) 095 [arXiv:1611.09855] [INSPIRE].
A. Ahmed and B.M. Dillon, Clockwork Goldstone bosons, Phys. Rev. D 96 (2017) 115031 [arXiv:1612.04011] [INSPIRE].
T. Hambye, D. Teresi and M.H.G. Tytgat, A clockwork WIMP, JHEP 07 (2017) 047 [arXiv:1612.06411] [INSPIRE].
N. Craig, I. Garcia Garcia and D. Sutherland, Disassembling the clockwork mechanism, JHEP 10 (2017) 018 [arXiv:1704.07831] [INSPIRE].
D. Teresi, Clockwork dark matter, arXiv:1705.09698 [INSPIRE].
G.F. Giudice and M. McCullough, Comment on “Disassembling the clockwork mechanism”, arXiv:1705.10162 [INSPIRE].
R. Coy, M. Frigerio and M. Ibe, Dynamical Clockwork Axions, JHEP 10 (2017) 002 [arXiv:1706.04529] [INSPIRE].
I. Ben-Dayan, Generalized clockwork theory, arXiv:1706.05308 [INSPIRE].
D.K. Hong, D.H. Kim and C.S. Shin, Clockwork graviton contributions to muon g − 2, arXiv:1706.09376 [INSPIRE].
S.C. Park and C.S. Shin, Clockwork seesaw mechanisms, Phys. Lett. B 776 (2018) 222 [arXiv:1707.07364] [INSPIRE].
S.H. Im, H.P. Nilles and A. Trautner, Exploring extra dimensions through inflationary tensor modes, arXiv:1707.03830 [INSPIRE].
J. Kim and J. McDonald, A clockwork Higgs portal model for freeze-in dark matter, arXiv:1709.04105 [INSPIRE].
H.M. Lee, Gauged U(1) clockwork theory, Phys. Lett. B 778 (2018) 79 [arXiv:1708.03564] [INSPIRE].
L.E. Ibáñez and M. Montero, A note on the WGC, effective field theory and clockwork within string theory, JHEP 02 (2018) 057 [arXiv:1709.02392] [INSPIRE].
L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].
L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].
O. Aharony, M. Berkooz, D. Kutasov and N. Seiberg, Linear dilatons, NS five-branes and holography, JHEP 10 (1998) 004 [hep-th/9808149] [INSPIRE].
O. Aharony, A. Giveon and D. Kutasov, LSZ in LST, Nucl. Phys. B 691 (2004) 3 [hep-th/0404016] [INSPIRE].
M. Günaydin, G. Sierra and P.K. Townsend, The geometry of N = 2 Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].
M. Günaydin, G. Sierra and P.K. Townsend, Exceptional supergravity theories and the MAGIC square, Phys. Lett. B 133 (1983) 72.
M. Günaydin, G. Sierra and P.K. Townsend, Gauging the D = 5 Maxwell-Einstein supergravity theories: more on Jordan algebras, Nucl. Phys. B 253 (1985) 573 [INSPIRE].
M. Gunaydin, G. Sierra and P.K. Townsend, Vanishing potentials in gauged N = 2 supergravity: an application of Jordan algebras, Phys. Lett. B 144 (1984) 41.
A. Ceresole and G. Dall’Agata, General matter coupled N = 2, D = 5 gauged supergravity, Nucl. Phys. B 585 (2000) 143 [hep-th/0004111] [INSPIRE].
B. de Wit and A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Commun. Math. Phys. 149 (1992) 307 [hep-th/9112027] [INSPIRE].
G. Sierra, N = 2 Maxwell matter einstein supergravities in D = 5, D = 4 and D = 3, Phys. Lett. B 157 (1985) 379.
A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [INSPIRE].
A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Heterotic M-theory in five-dimensions, Nucl. Phys. B 552 (1999) 246 [hep-th/9806051] [INSPIRE].
M. Günaydin and M. Zagermann, The vacua of 5D, N = 2 gauged Yang-Mills/Einstein tensor supergravity: abelian case, Phys. Rev. D 62 (2000) 044028 [hep-th/0002228] [INSPIRE].
E. Bergshoeff et al., N = 2 supergravity in five-dimensions revisited, Class. Quant. Grav. 21 (2004) 3015 [Erratum ibid. 23 (2006) 7149] [hep-th/0403045] [INSPIRE].
J.R. Ellis, M. Günaydin and M. Zagermann, Options for gauge groups in five-dimensional supergravity, JHEP 11 (2001) 024 [hep-th/0108094] [INSPIRE].
E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Naturally vanishing cosmological constant in N = 1 supergravity, Phys. Lett. B 133 (1983) 61.
J. R. Ellis, A.B. Lahanas, D.V. Nanopoulos and K. Tamvakis, No-scale supersymmetric standard model, Phys. Lett. B 134 (1984) 429.
L. Andrianopoli, S. Ferrara and M.A. Lledó, No-scale D = 5 supergravity from Scherk-Schwarz reduction of D = 6 theories, JHEP 06 (2004) 018 [hep-th/0406018] [INSPIRE].
S.P. de Alwis, J. Polchinski and R. Schimmrigk, Heterotic strings with tree level cosmological constant, Phys. Lett. B 218 (1989) 449 [INSPIRE].
L.J. Romans, Gauged N = 4 supergravities in five-dimensions and their Magnetovac backgrounds, Nucl. Phys. B 267 (1986) 433 [INSPIRE].
M. Awada and P.K. Townsend, N = 4 Maxwell-Einstein supergravity in five-dimensions and its SU(2) gauging, Nucl. Phys. B 255 (1985) 617 [INSPIRE].
G. Dall’Agata, C. Herrmann and M. Zagermann, General matter coupled N = 4 gauged supergravity in five-dimensions, Nucl. Phys. B 612 (2001) 123 [hep-th/0103106] [INSPIRE].
P.M. Cowdall, On gauged maximal supergravity in six-dimensions, JHEP 06 (1999) 018 [hep-th/9810041] [INSPIRE].
I. Antoniadis, A. Arvanitaki, S. Dimopoulos and A. Giveon, Phenomenology of TeV little string theory from holography, Phys. Rev. Lett. 108 (2012) 081602 [arXiv:1102.4043] [INSPIRE].
H. Lü, C.N. Pope, E. Sezgin and K.S. Stelle, Stainless super p-branes, Nucl. Phys. B 456 (1995) 669 [hep-th/9508042] [INSPIRE].
H. Lü, C.N. Pope and P.K. Townsend, Domain walls from Anti-de Sitter space-time, Phys. Lett. B 391 (1997) 39 [hep-th/9607164] [INSPIRE].
E. Bergshoeff, R. Kallosh and A. Van Proeyen, Supersymmetry in singular spaces, JHEP 10 (2000) 033 [hep-th/0007044] [INSPIRE].
E. Bergshoeff, R. Kallosh and A. Van Proeyen, Supersymmetry of RS bulk and brane, Fortsch. Phys. 49 (2001) 625 [hep-th/0012110] [INSPIRE].
A. Ceresole, G. Dall’Agata, R. Kallosh and A. Van Proeyen, Hypermultiplets, domain walls and supersymmetric attractors, Phys. Rev. D 64 (2001) 104006 [hep-th/0104056] [INSPIRE].
A.C. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, Eleven-dimensional supergravity compactified on Calabi-Yau threefolds, Phys. Lett. B 357 (1995) 76 [hep-th/9506144] [INSPIRE].
I. Antoniadis, S. Ferrara and T.R. Taylor, N = 2 heterotic superstring and its dual theory in five-dimensions, Nucl. Phys. B 460 (1996) 489 [hep-th/9511108] [INSPIRE].
S. Ferrara, R. Minasian and A. Sagnotti, Low-energy analysis of M and F theories on Calabi-Yau threefolds, Nucl. Phys. B 474 (1996) 323 [hep-th/9604097] [INSPIRE].
N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].
C.T. Hill, S. Pokorski and J. Wang, Gauge invariant effective Lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [hep-th/0104035] [INSPIRE].
N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].
A. Falkowski and H.D. Kim, Running of gauge couplings in AdS 5 via deconstruction, JHEP 08 (2002) 052 [hep-ph/0208058] [INSPIRE].
A. Kehagias, Exponential and power law hierarchies from supergravity, Phys. Lett. B 469 (1999) 123 [hep-th/9906204] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1710.04175
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Kehagias, A., Riotto, A. The clockwork supergravity. J. High Energ. Phys. 2018, 160 (2018). https://doi.org/10.1007/JHEP02(2018)160
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2018)160