Abstract
Decays of Higgs boson-like particles into multileptons is a well-motivated process for investigating physics beyond the Standard Model (SM). A unique feature of this final state is the precision with which the SM is known. As a result, simulations are used directly to estimate the background. Current searches consider specific models and typically focus on those with a single free parameter to simplify the analysis and interpretation. In this paper, we explore recent proposals for signal model agnostic searches using machine learning in the multilepton final state. These tools can be used to simultaneously search for many models, some of which have no dedicated search at the Large Hadron Collider. We find that the machine learning methods offer broad coverage across parameter space beyond where current searches are sensitive, with a necessary loss of performance compared to dedicated searches by only about one order of magnitude.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Exotic physics searches, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults, (2022).
ATLAS collaboration, Supersymmetry searches, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults, (2022).
ATLAS collaboration, Higgs and diboson searches, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults, (2022).
CMS collaboration, CMS exotica public physics results, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO, (2022).
CMS collaboration, CMS supersymmetry physics results, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS, (2022).
CMS collaboration, CMS beyond-two-generations (B2G) public physics results, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G, (2022).
LHCb collaboration, Publications of the QCD, electroweak and exotica working group, http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_QEE.html, (2022).
B. Abbott et al., Quasi-model-independent search for new high pT physics at D0, Phys. Rev. Lett. 86 (2001) 3712 [hep-ex/0011071].
D0 collaboration, Search for new physics in eμX data at D0 using SLEUTH: a quasi-model-independent search strategy for new physics, Phys. Rev. D 62 (2000) 092004 [hep-ex/0006011] [INSPIRE].
D0 collaboration, A quasi model independent search for new physics at large transverse momentum, Phys. Rev. D 64 (2001) 012004 [hep-ex/0011067] [INSPIRE].
D0 collaboration, A quasi-model-independent search for new high pT physics at D0, Phys. Rev. Lett. 86 (2001) 3712 [hep-ex/0011071] [INSPIRE].
H1 collaboration, A general search for new phenomena at HERA, Phys. Lett. B 674 (2009) 257 [arXiv:0901.0507] [INSPIRE].
H1 collaboration, A general search for new phenomena in ep scattering at HERA, Phys. Lett. B 602 (2004) 14 [hep-ex/0408044] [INSPIRE].
K.S. Cranmer, Searching for new physics: contributions to LEP and the LHC, Ph.D. thesis, University of Wisconsin, Madison, WI, U.S.A. (2005) [INSPIRE].
CDF collaboration, Model-independent and quasi-model-independent search for new physics at CDF, Phys. Rev. D 78 (2008) 012002 [arXiv:0712.1311] [INSPIRE].
CDF collaboration, Model-independent global search for new high-pT physics at CDF, arXiv:0712.2534 [INSPIRE].
CDF collaboration, Global search for new physics with 2.0 fb−1 at CDF, Phys. Rev. D 79 (2009) 011101 [arXiv:0809.3781] [INSPIRE].
CMS collaboration, MUSiC, a Model Unspecific Search for new physics, in pp Collisions at \( \sqrt{s} \) = 8 TeV, [INSPIRE].
CMS collaboration, Model unspecific search for new physics in pp collisions at \( \sqrt{s} \) = 7 TeV, [INSPIRE].
CMS collaboration, MUSiC, a model unspecific search for new physics, in pp collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-EXO-19-008, CERN, Geneva, Switzerland (2020).
CMS collaboration, MUSiC: a model-unspecific search for new physics in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 81 (2021) 629 [arXiv:2010.02984] [INSPIRE].
ATLAS collaboration, A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment, Eur. Phys. J. C 79 (2019) 120 [arXiv:1807.07447] [INSPIRE].
ATLAS collaboration, A general search for new phenomena with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2014-006, CERN, Geneva, Switzerland (2014) [INSPIRE].
ATLAS collaboration, A general search for new phenomena with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 7 TeV, ATLAS-CONF-2012-107, CERN, Geneva, Switzerland (2012) [INSPIRE].
R.T. D’Agnolo and A. Wulzer, Learning new physics from a machine, Phys. Rev. D 99 (2019) 015014 [arXiv:1806.02350] [INSPIRE].
J.H. Collins, K. Howe and B. Nachman, Anomaly detection for resonant new physics with machine learning, Phys. Rev. Lett. 121 (2018) 241803 [arXiv:1805.02664] [INSPIRE].
J.H. Collins, K. Howe and B. Nachman, Extending the search for new resonances with machine learning, Phys. Rev. D 99 (2019) 014038 [arXiv:1902.02634] [INSPIRE].
R.T. D’Agnolo, G. Grosso, M. Pierini, A. Wulzer and M. Zanetti, Learning multivariate new physics, Eur. Phys. J. C 81 (2021) 89 [arXiv:1912.12155] [INSPIRE].
A. Andreassen, B. Nachman and D. Shih, Simulation assisted likelihood-free anomaly detection, Phys. Rev. D 101 (2020) 095004 [arXiv:2001.05001] [INSPIRE].
B. Nachman and D. Shih, Anomaly detection with density estimation, Phys. Rev. D 101 (2020) 075042 [arXiv:2001.04990] [INSPIRE].
A. Hallin et al., Classifying anomalies through outer density estimation, Phys. Rev. D 106 (2022) 055006 [arXiv:2109.00546] [INSPIRE].
M. Farina, Y. Nakai and D. Shih, Searching for new physics with deep autoencoders, Phys. Rev. D 101 (2020) 075021 [arXiv:1808.08992] [INSPIRE].
T. Heimel, G. Kasieczka, T. Plehn and J.M. Thompson, QCD or what?, SciPost Phys. 6 (2019) 030 [arXiv:1808.08979] [INSPIRE].
T.S. Roy and A.H. Vijay, A robust anomaly finder based on autoencoders, arXiv:1903.02032 [INSPIRE].
O. Cerri, T.Q. Nguyen, M. Pierini, M. Spiropulu and J.-R. Vlimant, Variational autoencoders for new physics mining at the Large Hadron Collider, JHEP 05 (2019) 036 [arXiv:1811.10276] [INSPIRE].
A. Blance, M. Spannowsky and P. Waite, Adversarially-trained autoencoders for robust unsupervised new physics searches, JHEP 10 (2019) 047 [arXiv:1905.10384] [INSPIRE].
J. Hajer, Y.-Y. Li, T. Liu and H. Wang, Novelty detection meets collider physics, Phys. Rev. D 101 (2020) 076015 [arXiv:1807.10261] [INSPIRE].
A. De Simone and T. Jacques, Guiding new physics searches with unsupervised learning, Eur. Phys. J. C 79 (2019) 289 [arXiv:1807.06038] [INSPIRE].
A. Mullin, S. Nicholls, H. Pacey, M. Parker, M. White and S. Williams, Does SUSY have friends? A new approach for LHC event analysis, JHEP 02 (2021) 160 [arXiv:1912.10625] [INSPIRE].
A. Casa and G. Menardi, Nonparametric semisupervised classification for signal detection in high energy physics, arXiv:1809.02977 [INSPIRE].
B.M. Dillon, D.A. Faroughy and J.F. Kamenik, Uncovering latent jet substructure, Phys. Rev. D 100 (2019) 056002 [arXiv:1904.04200] [INSPIRE].
J.A. Aguilar-Saavedra, J.H. Collins and R.K. Mishra, A generic anti-QCD jet tagger, JHEP 11 (2017) 163 [arXiv:1709.01087] [INSPIRE].
M. Romão Crispim, N.F. Castro, R. Pedro and T. Vale, Transferability of deep learning models in searches for new physics at colliders, Phys. Rev. D 101 (2020) 035042 [arXiv:1912.04220] [INSPIRE].
M. Crispim Romão, N.F. Castro, J.G. Milhano, R. Pedro and T. Vale, Use of a generalized energy Mover’s distance in the search for rare phenomena at colliders, Eur. Phys. J. C 81 (2021) 192 [arXiv:2004.09360] [INSPIRE].
O. Knapp, O. Cerri, G. Dissertori, T.Q. Nguyen, M. Pierini and J.-R. Vlimant, Adversarially learned anomaly detection on CMS open data: re-discovering the top quark, Eur. Phys. J. Plus 136 (2021) 236 [arXiv:2005.01598] [INSPIRE].
ATLAS collaboration, Dijet resonance search with weak supervision using \( \sqrt{s} \) = 13 TeV pp collisions in the ATLAS detector, Phys. Rev. Lett. 125 (2020) 131801 [arXiv:2005.02983] [INSPIRE].
B.M. Dillon, D.A. Faroughy, J.F. Kamenik and M. Szewc, Learning the latent structure of collider events, JHEP 10 (2020) 206 [arXiv:2005.12319] [INSPIRE].
M. Crispim Romão, N.F. Castro and R. Pedro, Finding new physics without learning about it: anomaly detection as a tool for searches at colliders, Eur. Phys. J. C 81 (2021) 27 [arXiv:2006.05432] [INSPIRE].
O. Amram and C.M. Suarez, Tag N’ Train: a technique to train improved classifiers on unlabeled data, JHEP 01 (2021) 153 [arXiv:2002.12376] [INSPIRE].
T. Cheng, J.-F. Arguin, J. Leissner-Martin, J. Pilette and T. Golling, Variational autoencoders for anomalous jet tagging, Phys. Rev. D 107 (2023) 016002 [arXiv:2007.01850] [INSPIRE].
C.K. Khosa and V. Sanz, Anomaly awareness, arXiv:2007.14462 [INSPIRE].
P. Thaprasop, K. Zhou, J. Steinheimer and C. Herold, Unsupervised outlier detection in heavy-ion collisions, Phys. Scripta 96 (2021) 064003 [arXiv:2007.15830] [INSPIRE].
S. Alexander et al., Decoding dark matter substructure without supervision, arXiv:2008.12731 [INSPIRE].
J.A. Aguilar-Saavedra, F.R. Joaquim and J.F. Seabra, Mass Unspecific Supervised Tagging (MUST) for boosted jets, JHEP 03 (2021) 012 [arXiv:2008.12792] [INSPIRE].
J.A. Aguilar-Saavedra, Anomaly detection from mass unspecific jet tagging, Eur. Phys. J. C 82 (2022) 130 [arXiv:2111.02647] [INSPIRE].
K. Benkendorfer, L.L. Pottier and B. Nachman, Simulation-assisted decorrelation for resonant anomaly detection, Phys. Rev. D 104 (2021) 035003 [arXiv:2009.02205] [INSPIRE].
A.A. Pol, V. Berger, G. Cerminara, C. Germain and M. Pierini, Anomaly detection with conditional variational autoencoders, in Eighteenth international conference on machine learning and applications, (2020) [arXiv:2010.05531] [INSPIRE].
V. Mikuni and F. Canelli, Unsupervised clustering for collider physics, Phys. Rev. D 103 (2021) 092007 [arXiv:2010.07106] [INSPIRE].
M. van Beekveld et al., Combining outlier analysis algorithms to identify new physics at the LHC, JHEP 09 (2021) 024 [arXiv:2010.07940] [INSPIRE].
S.E. Park, D. Rankin, S.-M. Udrescu, M. Yunus and P. Harris, Quasi anomalous knowledge: searching for new physics with embedded knowledge, JHEP 21 (2020) 030 [arXiv:2011.03550] [INSPIRE].
D.A. Faroughy, Uncovering hidden new physics patterns in collider events using Bayesian probabilistic models, PoS ICHEP2020 (2021) 238 [arXiv:2012.08579] [INSPIRE].
G. Stein, U. Seljak and B. Dai, Unsupervised in-distribution anomaly detection of new physics through conditional density estimation, in 34th conference on neural information processing systems, (2020) [arXiv:2012.11638] [INSPIRE].
P. Chakravarti, M. Kuusela, J. Lei and L. Wasserman, Model-independent detection of new physics signals using interpretable semi-supervised classifier tests, arXiv:2102.07679 [INSPIRE].
J. Batson, C.G. Haaf, Y. Kahn and D.A. Roberts, Topological obstructions to autoencoding, JHEP 04 (2021) 280 [arXiv:2102.08380] [INSPIRE].
A. Blance and M. Spannowsky, Unsupervised event classification with graphs on classical and photonic quantum computers, JHEP 21 (2020) 170 [arXiv:2103.03897] [INSPIRE].
B. Bortolato, A. Smolkovič, B.M. Dillon and J.F. Kamenik, Bump hunting in latent space, Phys. Rev. D 105 (2022) 115009 [arXiv:2103.06595] [INSPIRE].
J.H. Collins, P. Martín-Ramiro, B. Nachman and D. Shih, Comparing weak- and unsupervised methods for resonant anomaly detection, Eur. Phys. J. C 81 (2021) 617 [arXiv:2104.02092] [INSPIRE].
B.M. Dillon, T. Plehn, C. Sauer and P. Sorrenson, Better latent spaces for better autoencoders, SciPost Phys. 11 (2021) 061 [arXiv:2104.08291] [INSPIRE].
T. Finke, M. Krämer, A. Morandini, A. Mück and I. Oleksiyuk, Autoencoders for unsupervised anomaly detection in high energy physics, JHEP 06 (2021) 161 [arXiv:2104.09051] [INSPIRE].
D. Shih, M.R. Buckley, L. Necib and J. Tamanas, Via machinae: searching for stellar streams using unsupervised machine learning, Mon. Not. Roy. Astron. Soc. 509 (2021) 5992 [arXiv:2104.12789] [INSPIRE].
O. Atkinson, A. Bhardwaj, C. Englert, V.S. Ngairangbam and M. Spannowsky, Anomaly detection with convolutional graph neural networks, JHEP 08 (2021) 080 [arXiv:2105.07988] [INSPIRE].
A. Kahn, J. Gonski, I. Ochoa, D. Williams and G. Brooijmans, Anomalous jet identification via sequence modeling, JINST 16 (2021) P08012 [arXiv:2105.09274] [INSPIRE].
T. Dorigo, M. Fumanelli, C. Maccani, M. Mojsovska, G.C. Strong and B. Scarpa, RanBox: anomaly detection in the copula space, JHEP 01 (2023) 008 [arXiv:2106.05747] [INSPIRE].
S. Caron, L. Hendriks and R. Verheyen, Rare and different: anomaly scores from a combination of likelihood and out-of-distribution models to detect new physics at the LHC, SciPost Phys. 12 (2022) 077 [arXiv:2106.10164] [INSPIRE].
E. Govorkova, E. Puljak, T. Aarrestad, M. Pierini, K.A. Woźniak and J. Ngadiuba, LHC physics dataset for unsupervised new physics detection at 40 MHz, Sci. Data 9 (2022) 118 [arXiv:2107.02157] [INSPIRE].
G. Kasieczka, B. Nachman and D. Shih, New methods and datasets for group anomaly detection from fundamental physics, in Conference on knowledge discovery and data mining, (2021) [arXiv:2107.02821] [INSPIRE].
S. Volkovich, F. De Vito Halevy and S. Bressler, A data-directed paradigm for BSM searches: the bump-hunting example, Eur. Phys. J. C 82 (2022) 265 [arXiv:2107.11573] [INSPIRE].
E. Govorkova et al., Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider, Nature Mach. Intell. 4 (2022) 154 [arXiv:2108.03986] [INSPIRE].
B. Ostdiek, Deep set auto encoders for anomaly detection in particle physics, SciPost Phys. 12 (2022) 045 [arXiv:2109.01695] [INSPIRE].
K. Fraser, S. Homiller, R.K. Mishra, B. Ostdiek and M.D. Schwartz, Challenges for unsupervised anomaly detection in particle physics, JHEP 03 (2022) 066 [arXiv:2110.06948] [INSPIRE].
G. Kasieczka et al., The LHC olympics 2020 a community challenge for anomaly detection in high energy physics, Rept. Prog. Phys. 84 (2021) 124201 [arXiv:2101.08320] [INSPIRE].
T. Aarrestad et al., The dark machines anomaly score challenge: benchmark data and model independent event classification for the Large Hadron Collider, SciPost Phys. 12 (2022) 043 [arXiv:2105.14027] [INSPIRE].
G. Karagiorgi, G. Kasieczka, S. Kravitz, B. Nachman and D. Shih, Machine learning in the search for new fundamental physics, arXiv:2112.03769 [INSPIRE].
M. Feickert and B. Nachman, A living review of machine learning for particle physics, arXiv:2102.02770 [INSPIRE].
R.T. d’Agnolo, G. Grosso, M. Pierini, A. Wulzer and M. Zanetti, Learning new physics from an imperfect machine, Eur. Phys. J. C 82 (2022) 275 [arXiv:2111.13633] [INSPIRE].
M. Letizia et al., Efficient kernel methods for model-independent new physics searches, in Proceedings of the deep learning for physical sciences workshop at NeurIPS, (2021).
ATLAS collaboration, Search for heavy resonances decaying into a pair of Z bosons in the ℓ+ℓ−ℓ′+ℓ′− and ℓ+ℓ−\( \nu \overline{\nu} \) final states using 139 fb−1 of proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 81 (2021) 332 [arXiv:2009.14791] [INSPIRE].
ATLAS collaboration, Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, JHEP 06 (2018) 166 [arXiv:1802.03388] [INSPIRE].
ATLAS collaboration, Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4ℓ decay channel at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 80 (2020) 942 [arXiv:2004.03969] [INSPIRE].
ATLAS collaboration, Search for Higgs bosons decaying into new spin-0 or spin-1 particles in four-lepton final states with the ATLAS detector with 139 fb−1 of pp collision data at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2022) 041 [arXiv:2110.13673] [INSPIRE].
CMS collaboration, Measurements of properties of the Higgs boson and search for an additional resonance in the four-lepton final state at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-16-033, CERN, Geneva, Switzerland (2016).
CMS collaboration, Search for a low-mass dilepton resonance in Higgs boson decays to four-lepton final states at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-19-007, CERN, Geneva, Switzerland (2020).
CMS collaboration, Search for low-mass dilepton resonances in Higgs boson decays to four-lepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 82 (2022) 290 [arXiv:2111.01299] [INSPIRE].
CMS collaboration, Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state, Phys. Rev. D 104 (2021) 052004 [arXiv:2104.12152] [INSPIRE].
T. Robens and T. Stefaniak, LHC benchmark scenarios for the real Higgs singlet extension of the standard model, Eur. Phys. J. C 76 (2016) 268 [arXiv:1601.07880] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
T. Sjostrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
A. Mertens, New features in DELPHES 3, J. Phys. Conf. Ser. 608 (2015) 012045 [INSPIRE].
M. Selvaggi, DELPHES 3: a modular framework for fast-simulation of generic collider experiments, J. Phys. Conf. Ser. 523 (2014) 012033 [INSPIRE].
Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].
B. Efron, Bootstrap methods: another look at the jackknife, Annals Statist. 7 (1979) 1 [INSPIRE].
J. Neyman and E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Phil. Trans. Roy. Soc. Lond. A 231 (1933) 289 [INSPIRE].
M. Abadi et al., TensorFlow: a system for large-scale machine learning, arXiv:1605.08695.
F. Chollet, Keras, https://github.com/fchollet/keras, (2017).
D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980 [INSPIRE].
B. Nachman and J. Thaler, Learning from many collider events at once, Phys. Rev. D 103 (2021) 116013 [arXiv:2101.07263] [INSPIRE].
A. Ghosh, B. Nachman and D. Whiteson, Uncertainty-aware machine learning for high energy physics, Phys. Rev. D 104 (2021) 056026 [arXiv:2105.08742] [INSPIRE].
P. De Castro and T. Dorigo, INFERNO: inference-aware neural optimisation, Comput. Phys. Commun. 244 (2019) 170 [arXiv:1806.04743] [INSPIRE].
S. Wunsch, S. Jörger, R. Wolf and G. Quast, Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters, Comput. Softw. Big Sci. 5 (2021) 4 [arXiv:2003.07186] [INSPIRE].
A. Elwood and D. Krücker, Direct optimisation of the discovery significance when training neural networks to search for new physics in particle colliders, arXiv:1806.00322 [INSPIRE].
L.-G. Xia, QBDT, a new boosting decision tree method with systematical uncertainties into training for high energy physics, Nucl. Instrum. Meth. A 930 (2019) 15 [arXiv:1810.08387] [INSPIRE].
T. Charnock, G. Lavaux and B.D. Wandelt, Automatic physical inference with information maximizing neural networks, Phys. Rev. D 97 (2018) 083004 [arXiv:1802.03537] [INSPIRE].
J. Alsing and B. Wandelt, Nuisance hardened data compression for fast likelihood-free inference, Mon. Not. Roy. Astron. Soc. 488 (2019) 5093 [arXiv:1903.01473] [INSPIRE].
N. Simpson and L. Heinrich, neos: end-to-end-optimised summary statistics for high energy physics, in 20th international workshop on advanced computing and analysis techniques in physics research: AI decoded — towards sustainable, diverse, performant and effective scientific computing, (2022) [arXiv:2203.05570] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2203.09601
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Krzyzanska, K., Nachman, B. Simulation-based anomaly detection for multileptons at the LHC. J. High Energ. Phys. 2023, 61 (2023). https://doi.org/10.1007/JHEP01(2023)061
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2023)061