Preview
Unable to display preview. Download preview PDF.
6. References
L. Berg, Introduction to the Operational Calculus, New York: Interscience, John Willey 1967.
J. J. Kovacic, An algorithm for solving second order linear homogeneous differential equations. Private communication.
G. Krabbe, Operational Calculus, New York-Heidelberg-Berlin, Springer-Verlag 1970
Macsyma Reference Manual, MIT Laboratory for Computer Science, Version nine, December 1977.
J. Mikusinski, Operational Calculus, London-New York-Paris-Los Angeles: Pergamon Press 1959.
D. Moore, Heaviside Operational Calculus, American Elsevier, New York 1971.
B. D. Saunders, An implementation of Kovacic's algorithm for solving second order linear homogeneous differential equations, Proc. ACM SYMSAC, 1981 pp 105–108.
M. F. Singer, Liouvillian Solutions of n-th Order Homogeneous Linear Differential Equations, American Journal of Mathematics, Vol. 103, No. 4, pp. 661–682
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1984 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Glinos, N., Saunders, B.D. (1984). Operational calculus techniques for solving differential equations. In: Fitch, J. (eds) EUROSAM 84. EUROSAM 1984. Lecture Notes in Computer Science, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032827
Download citation
DOI: https://doi.org/10.1007/BFb0032827
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-13350-6
Online ISBN: 978-3-540-38893-7
eBook Packages: Springer Book Archive