[go: up one dir, main page]

Skip to main content

Solving visibility problems by using skeleton structures

  • Communications
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1984 (MFCS 1984)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 176))

Abstract

This paper presents solutions to several visibility problems which can be considered as simplified versions of the hidden line elimination problem. We present a technique which allows to translate many line sweep algorithms involving sets of iso-oriented objects into algorithms for sets of non iso-oriented objects such that the asymptotic worst case time and space requirements do not change.

This work was supported by the grant Ot64/4-2 from the Deutsche Forschungsgemeinschaft

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, K.Q., Comments on 'Algorithms for Reporting and Counting Geometric Intersections', IEEE Transactions on Computers C-30, (1981), 147–148

    Google Scholar 

  2. Bentley, J.L. and Ottmann, Th., Algorithms for Reporting and Counting Geometric Intersections, IEEE Transactions on Computers C-28, (1979), 643–647

    Google Scholar 

  3. Bentley, J.L. and Wood, D., An Optimal Worst-Case Algorithm for Reporting Intersections of Rectangles, IEEE Transactions on Computers C-29, (1980), 571–577

    Google Scholar 

  4. Edelsbrunner, H., Dynamic Data Structures for Orthogonal Intersection Queries, Technical University of Graz, Graz, Austria, Institute für Informationsverarbeitung, Report F59, (1980)

    Google Scholar 

  5. Foley, J.D. and Van Dam, A., Addison-Wesley Publishing Co., Reading, Mass., (1982)

    Google Scholar 

  6. Güting, R.H., An Optimal Contour Algorithm for Iso-Oriented Rectangles, Journal of Algorithms, (1984), to appear

    Google Scholar 

  7. Guibas, L.J. and Yao, F.F., On Translating a Set of Rectangles, Proceedings of the 12th Annual ACM Symposium on Theory of Computing, (1980), 154–160

    Google Scholar 

  8. Lee, D.T. and Preparata, F.P., Location of a Point in a Planar Subdivision and its Applications, SIAM J. Comput. Vol.6, No.3, (1977), 594–606

    Google Scholar 

  9. Lipski, W. and Preparata, F.P., Finding the Contour of a Union of Iso-Oriented Rectangles, Journal of Algorithms, 1, (1980), 235–246

    Google Scholar 

  10. McCreight, E.M., Efficient Algorithms for Enumerating Intersecting Intervals and Rectangles, Report CSL-80-9, Xeroz PARC, (1980)

    Google Scholar 

  11. Nievergelt, J., Trees as Data and File Structures, Proceedings CAAP'81, LNCS 112, (1981), 35–45

    Google Scholar 

  12. Nievergelt, J. and Preparata, F.P., Plane-Sweep Algorithms for Intersecting Geometric Figures, Communications of the ACM 25, (1982), 739–747

    Google Scholar 

  13. Nurmi, O., A Fast Line-Sweep Algorithm for Hidden Line Elimination, Universität Karlsruhe, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Report 134, (1984)

    Google Scholar 

  14. Overmans, M.H., The Design of Dynamic Data Structures, Lecture Notes in Computer Science, 156, Berlin, (1983)

    Google Scholar 

  15. Ottmann, Th. and Widmayer, P., On Translating a Set of Line Segments, Computer Vision, Graphics, and Image Processing 24, (1983) 382–389

    Google Scholar 

  16. Ottmann, Th. and Widmayer, P., On the Placement of Line Segments into a Skeleton Structure, Universität Karlsruhe, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Report 114, (1982)

    Google Scholar 

  17. Preparata, F.P., A Note on Locating a Set of Points in a Planar Subdivision, SIAM J., Comput., Vol.8, No.4, (1979), 542–545

    Google Scholar 

  18. Swart, G. and Ladner, R., Efficient Algorithms for Reporting Intersections, University of Washington, Seattle, Computer Science Department, Technical Report No. 83-07-03, (1983)

    Google Scholar 

  19. Wood, D., The Contour Problem for Rectilinear Polygons, Report CS-83-20, University of Waterloo, (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. P. Chytil V. Koubek

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ottmann, T., Widmayer, P. (1984). Solving visibility problems by using skeleton structures. In: Chytil, M.P., Koubek, V. (eds) Mathematical Foundations of Computer Science 1984. MFCS 1984. Lecture Notes in Computer Science, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030329

Download citation

  • DOI: https://doi.org/10.1007/BFb0030329

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13372-8

  • Online ISBN: 978-3-540-38929-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics