Abstract
This paper presents solutions to several visibility problems which can be considered as simplified versions of the hidden line elimination problem. We present a technique which allows to translate many line sweep algorithms involving sets of iso-oriented objects into algorithms for sets of non iso-oriented objects such that the asymptotic worst case time and space requirements do not change.
This work was supported by the grant Ot64/4-2 from the Deutsche Forschungsgemeinschaft
Preview
Unable to display preview. Download preview PDF.
References
Brown, K.Q., Comments on 'Algorithms for Reporting and Counting Geometric Intersections', IEEE Transactions on Computers C-30, (1981), 147–148
Bentley, J.L. and Ottmann, Th., Algorithms for Reporting and Counting Geometric Intersections, IEEE Transactions on Computers C-28, (1979), 643–647
Bentley, J.L. and Wood, D., An Optimal Worst-Case Algorithm for Reporting Intersections of Rectangles, IEEE Transactions on Computers C-29, (1980), 571–577
Edelsbrunner, H., Dynamic Data Structures for Orthogonal Intersection Queries, Technical University of Graz, Graz, Austria, Institute für Informationsverarbeitung, Report F59, (1980)
Foley, J.D. and Van Dam, A., Addison-Wesley Publishing Co., Reading, Mass., (1982)
Güting, R.H., An Optimal Contour Algorithm for Iso-Oriented Rectangles, Journal of Algorithms, (1984), to appear
Guibas, L.J. and Yao, F.F., On Translating a Set of Rectangles, Proceedings of the 12th Annual ACM Symposium on Theory of Computing, (1980), 154–160
Lee, D.T. and Preparata, F.P., Location of a Point in a Planar Subdivision and its Applications, SIAM J. Comput. Vol.6, No.3, (1977), 594–606
Lipski, W. and Preparata, F.P., Finding the Contour of a Union of Iso-Oriented Rectangles, Journal of Algorithms, 1, (1980), 235–246
McCreight, E.M., Efficient Algorithms for Enumerating Intersecting Intervals and Rectangles, Report CSL-80-9, Xeroz PARC, (1980)
Nievergelt, J., Trees as Data and File Structures, Proceedings CAAP'81, LNCS 112, (1981), 35–45
Nievergelt, J. and Preparata, F.P., Plane-Sweep Algorithms for Intersecting Geometric Figures, Communications of the ACM 25, (1982), 739–747
Nurmi, O., A Fast Line-Sweep Algorithm for Hidden Line Elimination, Universität Karlsruhe, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Report 134, (1984)
Overmans, M.H., The Design of Dynamic Data Structures, Lecture Notes in Computer Science, 156, Berlin, (1983)
Ottmann, Th. and Widmayer, P., On Translating a Set of Line Segments, Computer Vision, Graphics, and Image Processing 24, (1983) 382–389
Ottmann, Th. and Widmayer, P., On the Placement of Line Segments into a Skeleton Structure, Universität Karlsruhe, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Report 114, (1982)
Preparata, F.P., A Note on Locating a Set of Points in a Planar Subdivision, SIAM J., Comput., Vol.8, No.4, (1979), 542–545
Swart, G. and Ladner, R., Efficient Algorithms for Reporting Intersections, University of Washington, Seattle, Computer Science Department, Technical Report No. 83-07-03, (1983)
Wood, D., The Contour Problem for Rectilinear Polygons, Report CS-83-20, University of Waterloo, (1983)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1984 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ottmann, T., Widmayer, P. (1984). Solving visibility problems by using skeleton structures. In: Chytil, M.P., Koubek, V. (eds) Mathematical Foundations of Computer Science 1984. MFCS 1984. Lecture Notes in Computer Science, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030329
Download citation
DOI: https://doi.org/10.1007/BFb0030329
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-13372-8
Online ISBN: 978-3-540-38929-3
eBook Packages: Springer Book Archive