[go: up one dir, main page]

Skip to main content

Computational limitations of Stochastic Turing machines and Arthur-Merlin games with small space bounds

  • Invited Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1997 (MFCS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1295))

  • 110 Accesses

Abstract

A Stochastic Turing machine (STM) is a Turing machine that can perform nondeterministic and probabilistic moves and alternate between both types. Such devices are also called games against nature, Arthur-Merlin games, or interactive proof systems with public coins. We give an overview on complexity classes defined by STMs with space resources between constant and logarithmic size and constant or sublinear bounds on the number of alternations. New lower space bounds are shown for a specific family of languages by exploiting combinatorial properties. These results imply an infinite hierarchy with respect to the number of alternations of STMs, and nonclosure properties of certain classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Babai, Trading Group Theory for Randomness, Proc. 17. ACM Symp. on Theory of Computing, 1985, 421–429.

    Google Scholar 

  2. B. von Braunmiihl, R. Gengler, R. Rettinger The Alternation Hierarchy for Machines with Sublogarithmic Space is Infinite, Comp. Compl. 3, 1993, 207–230.

    Article  Google Scholar 

  3. A. Chandra, D. Kozen, L. Stockmeyer, Alternation, J. ACM 28, 1981, 114–133.

    Article  Google Scholar 

  4. A. Condon, Computational Model of Games, MIT Press, 1989.

    Google Scholar 

  5. A. Condon, The Complexity of Space Bounded Interactive Proof Systems, in Complexity Theory: Current Research, S. Homer, U. Schöning, K. Ambos-Spies (Eds.), Cambridge Univ. Press, 1993, 147–190.

    Google Scholar 

  6. A. Condon, R. Lipton, On the Complexity of Space Bounded Interactive Proofs, Proc. 30. IEEE Symp. on Found. of Comp. Science, 1989, 462–467.

    Google Scholar 

  7. A. Condon, L. Hellerstein, S. Pottle, A. Wigderson, On the Power of Finite Automata with both Nondeterministic and Probabilistic States, Proc. 26. ACM Symp. on Theory of Computing, 1994, 676–685.

    Google Scholar 

  8. S. Dwork, L. Stockmeyer, Finite State Verifiers L the Power of Interaction, J. ACM 39, 1992, 800–828.

    Article  Google Scholar 

  9. R. Freivalds, Fast Probabilistic Algorithms, Proc. 8. Int. Symp. on Math. Found. of Comp. Science, 1979, LNCS, 57–69.

    Google Scholar 

  10. R. Freivalds, Probabilistic 2-way Machines, Proc. 10. Int. Symp. on Math. Found. of Comp. Science, 1981, LNCS, 33–45.

    Google Scholar 

  11. R. Freivalds, M. Karpinski, Lower Space Bounds for Randomized Computation, Proc. 21. EATCS Int. Colloq. on Automata, Languages, and Programming, 1994, LNCS, 580–592.

    Google Scholar 

  12. V. Geffert, A Hierarchy that Does not Collaps: Alternation in Low Level Space, Theo. Information and Applications 28, 1994, 465–512.

    Google Scholar 

  13. A. Greenberg, A. Weiss, A Lower Bound for Probabilistic Algorithms for Finite State Machines, J. Comput. Syst. Sci. 33, 1986, 88–105.

    Article  Google Scholar 

  14. J. Gill, Computational Complexity of Probabilistic Turing Machines, SIAM J. Computing 7, 1977, 675–695.

    Article  Google Scholar 

  15. S. Goldwasser, S. Micali, C. Rackoff, The Knowledge Complexity of Interactive Proof Systems, SIAM J. Computing 18, 1989, 186–208.

    Article  Google Scholar 

  16. S. Goldwasser, M. Sipser, Private Coins versus Public Coins in Interactive Proof Systems, Proc. 18. ACM Symp. on Theory of Computing, 1986, 59–68.

    Google Scholar 

  17. K. Iwama, ASpace (o(log log n)) is Regular, SIAM J. Computing 22,1993,136–146.

    Article  Google Scholar 

  18. M. Liśkiewicz, Interactive Proof Systems with Public Coins: Lower Space Bounds and Hierarchies of Complexity Classes, ICSI Technical Report 1996, also Proc. 14. GI-AFCET Symp. on Theo. Aspects of Comp. Science, 1997, LNCS 1200,129–140.

    Google Scholar 

  19. M. Liskiewicz, R. Reischuk, Separating the Lower Levels of the Sublogarithmic Space Hierarchy, Proc. 10. GI-AFCET Symp. on Theo. Aspects of Comp. Science, 1993, LNCS, 16–27.

    Google Scholar 

  20. M. Liskiewicz, R. Reischuk, The Sublogarithmic Alternating Space World, SIAM J. Computing 24, 1996, 828–861.

    Article  Google Scholar 

  21. M. Liskiewicz and R. Reischuk, Space Bounds for Interactive Proof Systems with Public Coins and Bounded Number of Rounds, ICSI Technical Report No. TR-96-025, Berkeley, July 1996.

    Google Scholar 

  22. M. Liskiewicz and R. Reischuk, Separating Small Space Complexity Classes of Stochastic Turing Machines, Technical Report Informatik/Mathematik A-96-17, Med. Universität zu Lℏeck, November 1997.

    Google Scholar 

  23. M. Liskiewicz and R. Reischuk, Computing with Sublogarithmic Space, in Complexity Theory Retrospective II, A. Selman, L. Hemaspaandra (Eds), Springer Verlag, 1997.

    Google Scholar 

  24. I. Macarie, Space-bounded Probabilistic Computation: Old and New Stories, SIGACT News 26, 1995, 2–12.

    Article  Google Scholar 

  25. C. Papadimitriou, Games against Nature, J. CSS 31, 1985, 288–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Igor Prívara Peter Ružička

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liśkiewicz, M., Reischuk, R. (1997). Computational limitations of Stochastic Turing machines and Arthur-Merlin games with small space bounds. In: Prívara, I., Ružička, P. (eds) Mathematical Foundations of Computer Science 1997. MFCS 1997. Lecture Notes in Computer Science, vol 1295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029952

Download citation

  • DOI: https://doi.org/10.1007/BFb0029952

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63437-9

  • Online ISBN: 978-3-540-69547-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics