Abstract
A Stochastic Turing machine (STM) is a Turing machine that can perform nondeterministic and probabilistic moves and alternate between both types. Such devices are also called games against nature, Arthur-Merlin games, or interactive proof systems with public coins. We give an overview on complexity classes defined by STMs with space resources between constant and logarithmic size and constant or sublinear bounds on the number of alternations. New lower space bounds are shown for a specific family of languages by exploiting combinatorial properties. These results imply an infinite hierarchy with respect to the number of alternations of STMs, and nonclosure properties of certain classes.
Preview
Unable to display preview. Download preview PDF.
References
L. Babai, Trading Group Theory for Randomness, Proc. 17. ACM Symp. on Theory of Computing, 1985, 421–429.
B. von Braunmiihl, R. Gengler, R. Rettinger The Alternation Hierarchy for Machines with Sublogarithmic Space is Infinite, Comp. Compl. 3, 1993, 207–230.
A. Chandra, D. Kozen, L. Stockmeyer, Alternation, J. ACM 28, 1981, 114–133.
A. Condon, Computational Model of Games, MIT Press, 1989.
A. Condon, The Complexity of Space Bounded Interactive Proof Systems, in Complexity Theory: Current Research, S. Homer, U. Schöning, K. Ambos-Spies (Eds.), Cambridge Univ. Press, 1993, 147–190.
A. Condon, R. Lipton, On the Complexity of Space Bounded Interactive Proofs, Proc. 30. IEEE Symp. on Found. of Comp. Science, 1989, 462–467.
A. Condon, L. Hellerstein, S. Pottle, A. Wigderson, On the Power of Finite Automata with both Nondeterministic and Probabilistic States, Proc. 26. ACM Symp. on Theory of Computing, 1994, 676–685.
S. Dwork, L. Stockmeyer, Finite State Verifiers L the Power of Interaction, J. ACM 39, 1992, 800–828.
R. Freivalds, Fast Probabilistic Algorithms, Proc. 8. Int. Symp. on Math. Found. of Comp. Science, 1979, LNCS, 57–69.
R. Freivalds, Probabilistic 2-way Machines, Proc. 10. Int. Symp. on Math. Found. of Comp. Science, 1981, LNCS, 33–45.
R. Freivalds, M. Karpinski, Lower Space Bounds for Randomized Computation, Proc. 21. EATCS Int. Colloq. on Automata, Languages, and Programming, 1994, LNCS, 580–592.
V. Geffert, A Hierarchy that Does not Collaps: Alternation in Low Level Space, Theo. Information and Applications 28, 1994, 465–512.
A. Greenberg, A. Weiss, A Lower Bound for Probabilistic Algorithms for Finite State Machines, J. Comput. Syst. Sci. 33, 1986, 88–105.
J. Gill, Computational Complexity of Probabilistic Turing Machines, SIAM J. Computing 7, 1977, 675–695.
S. Goldwasser, S. Micali, C. Rackoff, The Knowledge Complexity of Interactive Proof Systems, SIAM J. Computing 18, 1989, 186–208.
S. Goldwasser, M. Sipser, Private Coins versus Public Coins in Interactive Proof Systems, Proc. 18. ACM Symp. on Theory of Computing, 1986, 59–68.
K. Iwama, ASpace (o(log log n)) is Regular, SIAM J. Computing 22,1993,136–146.
M. Liśkiewicz, Interactive Proof Systems with Public Coins: Lower Space Bounds and Hierarchies of Complexity Classes, ICSI Technical Report 1996, also Proc. 14. GI-AFCET Symp. on Theo. Aspects of Comp. Science, 1997, LNCS 1200,129–140.
M. Liskiewicz, R. Reischuk, Separating the Lower Levels of the Sublogarithmic Space Hierarchy, Proc. 10. GI-AFCET Symp. on Theo. Aspects of Comp. Science, 1993, LNCS, 16–27.
M. Liskiewicz, R. Reischuk, The Sublogarithmic Alternating Space World, SIAM J. Computing 24, 1996, 828–861.
M. Liskiewicz and R. Reischuk, Space Bounds for Interactive Proof Systems with Public Coins and Bounded Number of Rounds, ICSI Technical Report No. TR-96-025, Berkeley, July 1996.
M. Liskiewicz and R. Reischuk, Separating Small Space Complexity Classes of Stochastic Turing Machines, Technical Report Informatik/Mathematik A-96-17, Med. Universität zu Lℏeck, November 1997.
M. Liskiewicz and R. Reischuk, Computing with Sublogarithmic Space, in Complexity Theory Retrospective II, A. Selman, L. Hemaspaandra (Eds), Springer Verlag, 1997.
I. Macarie, Space-bounded Probabilistic Computation: Old and New Stories, SIGACT News 26, 1995, 2–12.
C. Papadimitriou, Games against Nature, J. CSS 31, 1985, 288–301.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liśkiewicz, M., Reischuk, R. (1997). Computational limitations of Stochastic Turing machines and Arthur-Merlin games with small space bounds. In: Prívara, I., Ružička, P. (eds) Mathematical Foundations of Computer Science 1997. MFCS 1997. Lecture Notes in Computer Science, vol 1295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029952
Download citation
DOI: https://doi.org/10.1007/BFb0029952
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63437-9
Online ISBN: 978-3-540-69547-9
eBook Packages: Springer Book Archive