[go: up one dir, main page]

Skip to main content

Lower bounds for a proof system with an exponential speed-up over constant-depth Frege systems and over polynomial calculus

  • Invited Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1997 (MFCS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1295))

Abstract

We prove lower bounds for a proof system having exponential speed-up over both polynomial calculus and constant-depth Frege systems in DeMorgan language.

Partially supported by cooperative research grant INT-9600919/ME-103 from the NSF (USA) and the MŠMT (Czech republic) and by the grant #A1019602 of the Academy of Sciences of the Czech Republic.

On leave from the Mathematical Institute of the Academy of Sciences at Prague.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beame, P., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P.: Lower bounds on Hilbert's Nullstellensatz and propositional proofs. Proceedings of the London Mathematical Society 73(3) (1996) 1–26

    Google Scholar 

  2. Beame, P., Riis, S.: More on the relative strength of counting principles. (submitted)

    Google Scholar 

  3. Buss, S., Impagliazzo, R., Krajiček, J., Pudlák, P., Razborov, A. A., Sgall, J.: Proof complexity in algebraic systems and bounded depth Frege systems with modular counting. Computational Complexity (to appear)

    Google Scholar 

  4. Clegg, M, Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proceedings of the 28th ACM Symposium on Theory of Computing, ACM (1996) 174–183

    Google Scholar 

  5. Krajĩcek, J.: Bounded arithmetic, propositional logic, and complexity theory. Encyclopedia of Mathematics and Its Applications, Vol. 60 Cambridge University Press (1995)

    Google Scholar 

  6. Krajićek, J.: A fundamental problem of mathematical logic. Annals of the Kurt Gödel Society, Springer-Verlag, Collegium Logicum, 2 (1995) 56–64

    Google Scholar 

  7. Krajićek, J.: On methods for proving lower bounds in propositional logic. In: Logic and Scientific Methods Eds. M. L. Dalla Chiara et al., (Vol. 1 of Proc. of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence (August 19–25, 1995)), Synthese Library, 259 Kluwer Academic Publ., Dordrecht (1997) 69–83

    Google Scholar 

  8. Krajićek, J.: On the degree of ideal membership proofs from uniform families of polynomials over a finite field. (in preparation)

    Google Scholar 

  9. Krajićek, J.,Pudlák, P., Woods, A.: Exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms 7(1) (1995) 15–39

    Google Scholar 

  10. Pitassi, T., Beame, P., and Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Computational Complexity 3(2) (1993) 97–140

    Article  Google Scholar 

  11. Pudlák, P.: The lengths of proofs. In: Handbook of Proof Theory, Ed. S. Buss, (to appear)

    Google Scholar 

  12. Razborov, A. A.: Lower bounds for propositional proofs and independence results in bounded arithmetic. In: Proc. of the 23rd ICALP, F.Meyer auf der Heide and B. Monien eds., LN in Computer Science, 1099, Springer-Verlag, (1996) 48–62

    Google Scholar 

  13. Razborov, A. A.: Lower bounds for the polynomial calculus. (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Igor Prívara Peter Ružička

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krajiček, J. (1997). Lower bounds for a proof system with an exponential speed-up over constant-depth Frege systems and over polynomial calculus. In: Prívara, I., Ružička, P. (eds) Mathematical Foundations of Computer Science 1997. MFCS 1997. Lecture Notes in Computer Science, vol 1295. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029951

Download citation

  • DOI: https://doi.org/10.1007/BFb0029951

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63437-9

  • Online ISBN: 978-3-540-69547-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics