[go: up one dir, main page]

Skip to main content

Medical image segmentation using topologically adaptable surfaces

  • Segmentation and Deformable Models
  • Conference paper
  • First Online:
CVRMed-MRCAS'97 (CVRMed 1997, MRCAS 1997)

Abstract

Efficient and powerful topologically adaptable deformable surfaces can be created by embedding and defining discrete deformable surface models in terms of an Affine Cell Decomposition (ACD) framework. The ACD framework, combined with a novel and original reparameterization algorithm, creates a simple but elegant mechanism for multiresolution deformable curve, surface, and solid models to “flow” or “grow” into objects with complex geometries and topologies, and adapt their shape to recover the object boundaries. ACD-based models maintain the traditional parametric physics-based formulation of deformable models, allowing them to incorporate a priori knowledge in the form of energy and force-based constraints, and provide intuitive interactive capabilities. This paper describes ACD-based deformable surfaces and demonstrates their potential for extracting and reconstructing some of the most complex biological structures from medical image volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In Proc. Fifth International Conf. on Computer Vision (ICCV'95), Cambridge, MA, June, 1995, pages 694–699, Los Alamitos, CA, 1995. IEEE Computer Society Press.

    Google Scholar 

  2. I. Cohen, L.D. Cohen, and N. Ayache. Using deformable surfaces to segment 3D images and infer differential structures. CVGIP: Image Understanding, 56(2):242–263, 1992.

    Article  Google Scholar 

  3. H. Delingette, M. Hebert, and K. Ikeuchi. Shape representation and image segmentation using deformable surfaces. Image and Vision Computing, 10(3):132–144, April 1992.

    Article  Google Scholar 

  4. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321–331, 1988.

    Article  Google Scholar 

  5. F. Leitner and P. Cinquin. Complex topology 3D objects segmentation. In Model-Based Vision Development and Tools, volume 1609 of SPIE Proc., pages 16–26, Bellingham, WA, 1991. SPIE.

    Google Scholar 

  6. R. Malladi, R. Kimmel, D. Adalsteinsson, G. Sapiro, V. Caselles, and J.A. Sethian. A geometric approach to segmentation and analysis of 3D medical images. In IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, San Francisco, CA, June, 1996, pages 244–252, Los Alamitos, CA, 1996. IEEE Computer Society Press.

    Google Scholar 

  7. R. Malladi, J. Sethian, and B.C. Vemuri. Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(2):158–175, Feb. 1995.

    Article  Google Scholar 

  8. T. McInerney. Topologically Adaptable Deformable Models for Medcial Image Analysis. PhD thesis, Department of Computer Science, University of Toronto, Toronto, ON, Canada, 1997. To be completed Jan., 1997.

    Google Scholar 

  9. T. McInerney and D. Terzopoulos. A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Computerized Medical Imaging and Graphics, 19(1):69–83, January 1995.

    Article  PubMed  Google Scholar 

  10. T. McInerney and D. Terzopoulos. Topologically adaptable snakes. In Proc. Fifth International Conf. on Computer Vision (ICCV'95), Cambridge, MA, June, 1995, pages 840–845, Los Alamitos, CA, 1995. IEEE Computer Society Press.

    Google Scholar 

  11. J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. O'Bara, and M.J. Wozny. Geometrically deformed models: A method for extracting closed geometric models from volume data. In Computer Graphics (Proc. SIGGRAPH'91 Conf., Las Vegas, NV, July, 1991), volume 25(4), pages 217–226, July 1991.

    Google Scholar 

  12. J.L. Prince and C. Xu. A new external force model for snakes. In 1996 Image and Multidimensional Signal Processing Workshop, pages 30–31, 1996.

    Google Scholar 

  13. R. Szeliski, D. Tonnesen, and D. Terzopoulos. Modeling surfaces of arbitrary topology with dynamic particles. In Proc. Conf. Computer Vision and Pattern Recognition (CVPR'93), New York, NY, June, 1993, pages 82–87, Los Alamitos, CA, 1993. IEEE Computer Society Press.

    Google Scholar 

  14. D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artificial Intelligence, 36(1):91–123, 1988.

    Article  Google Scholar 

  15. R. Whitaker. Volumetric deformable models. In R.A. Robb, editor, Proc. Third Conf. on Visualization in Biomedical Computing (VBC'94), Rochester, MN, October, 1994, volume 2359 of SPIE Proc., Bellingham, WA, 1994. SPIE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jocelyne Troccaz Eric Grimson Ralph Mösges

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McInerney, T., Terzopoulos, D. (1997). Medical image segmentation using topologically adaptable surfaces. In: Troccaz, J., Grimson, E., Mösges, R. (eds) CVRMed-MRCAS'97. CVRMed MRCAS 1997 1997. Lecture Notes in Computer Science, vol 1205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0029221

Download citation

  • DOI: https://doi.org/10.1007/BFb0029221

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62734-0

  • Online ISBN: 978-3-540-68499-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics