[go: up one dir, main page]

Skip to main content

W Reconstructed

  • Conference paper
  • First Online:
ZUM '97: The Z Formal Specification Notation (ZUM 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1212))

Included in the following conference series:

  • 149 Accesses

Abstract

An early version of the Z Standard included the deductive system W for reasoning about Z specifications. Later versions contain a different deductive system. In this paper we sketch a proof that W is relatively sound with respect to this new deductive system. We do this by demonstrating a semantic basis for a correspondence between the two systems, then showing that each of the inference rules of W can be simulated as derived rules in the new system. These new rules are presented as tactics over the the inference rules of the new deductive system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jonathan P. Bowen and Mike J. C. Gordon. Z and HOL. In J. P. Bowen and J. A. Hall, editors, Z User Workshop, Cambridge 1994, Workshops in Computing, pages 141–167. Springer-Verlag, 1994.

    Google Scholar 

  2. Jonathan P. Bowen and Michael G. Hinchey, editors. ZUM'95: The Z Formal Specification Notation, volume 967 of LNCS. Springer-Verlag, 1995.

    Google Scholar 

  3. S. M. Brien, J. E. Nicholls, et al. Z base standard. ZIP Project Technical Report ZIP/PRG/92/121, SRC Document: 132, Version 1.0, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK, November 1992.

    Google Scholar 

  4. Stephen M. Brien. A Model and Logic for Generically Typed Set Theory (Z). D.Phil. thesis, University of Oxford, 1995. New version expected 1996.

    Google Scholar 

  5. Marcin Engel and Jens Ulrik Skakkeebæk. Applying PVS to Z. ProCoS II Technical Report IT/DTU ME 3/1, Department of Computer Science, Technical University of Denmark, December 1994.

    Google Scholar 

  6. W. T. Harwood. Proof rules for Balzac. Technical Report WTH/P7/001, Imperial Software Technology, Cambridge, UK, 1991.

    Google Scholar 

  7. R. B. Jones. ICL ProofPower. BCS FACS FACTS, Series III, 1(1):10–13, Winter 1992.

    Google Scholar 

  8. Ina Kraan and Peter Baumann. Implementing Z in Isabelle. In Bowen and Hinchey [BH95], pages 355–373.

    Google Scholar 

  9. Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in Isabelle/HOL. In 1996 International Conference on Theorem Proving in Higher Order Logic. Springer-Verlag, 1996.

    Google Scholar 

  10. Andrew Martin. Encoding W: A Logic for Z in 2OBJ. In J. C. P. Woodcock and P. G. Larsen, editors, FME'93: Industrial-Strength Formal Methods, volume 670 of Lecture Notes in Computer Science, pages 462–481. Springer-Verlag, 1993.

    Google Scholar 

  11. A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A tactic calculus. Formal Aspects of Computing, 8(4):479–489. Springer-Verlag, 1996.

    Google Scholar 

  12. John Nicholls, editor. Z Notation. Z Standards Panel, ISO Panel JTC1/SC22/ WG19 (Rapporteur Group for Z), 1995. Version 1.2, ISO Committee Draft.

    Google Scholar 

  13. M. Saaltink. Z and Eves. In J. E. Nicholls, editor, Z User Workshop, York 1991, Workshops in Computing, pages 223–242. Springer-Verlag, 1992.

    Google Scholar 

  14. Graeme Smith. Extending W for Object-Z. In Bowen and Hinchey [BH95], pages 276–295.

    Google Scholar 

  15. I. Toyn and J.G. Hall. Proving Conjectures using Cadiℤ. Cadiℤ documentation (to appear as a York University Technical Report).

    Google Scholar 

  16. I. Toyn and J.A. McDermid. Cadiℤ: An architecture for Z tools and its implementation. Software—Practice and Experience, 25(3):305–330, 1991.

    Google Scholar 

  17. J. C. P. Woodcock and S. M. Brien. W: A Logic for Z. In Proceedings 6th Z User Meeting. Springer-Verlag, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jonathan P. Bowen Michael G. Hinchey David Till

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hall, J., Martin, A. (1997). W Reconstructed. In: Bowen, J.P., Hinchey, M.G., Till, D. (eds) ZUM '97: The Z Formal Specification Notation. ZUM 1997. Lecture Notes in Computer Science, vol 1212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027287

Download citation

  • DOI: https://doi.org/10.1007/BFb0027287

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62717-3

  • Online ISBN: 978-3-540-68490-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics