[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Gamma herpesviruses: Pathogenesis of infection and cell signaling

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Altered cell signaling is the molecular basis for cell proliferation occurring in association with several gamma herpesvirus infections. Three gamma herpesviruses, namely EBV/HHV-4, KSHV/HHV-8 and the MHV-68 (and/or MHV-72) and their unusual cell-pirated gene products are discussed in this respect. The EBV, KSHV as well as the MHV DNA may persist lifelong in an episomal form in the host carrier cells (mainly in lymphocytes but also in macrophages, in non-hornifying squamous epithelium and/or in blood vessel endothelial cells). Under conditions of extremely limited transcription, the EBV-infected cells express EBNA1 (EB nuclear antigen 1), the KSHV infected cells express LANA1 (latent nuclear antigen 1), while the MHV DNA carrier cells express the latency-associated protein M2. With the full set of latency-associated proteins expressed, EBV carrier cells synthesize additional EBNAs and at least one LMP (latent membrane protein 1). The latent KSHV carrier cells, in addition to LANA1, may express a viral cyclin, a viral Fas-DD-like ICE inhibitor protein (vFLIP) and a virus-specific transformation protein called kaposin (K12). In MHV latency with a wide expression of latency-associated proteins, the carrier cells express a LANA analogue (ORF73), the M3 protein, the K3/IE (immediate early) proteins and M11/bcl-2 homologue proteins. During the period of limited gene expression, the latency-associated proteins serve mainly for the maintenance of the latent episomal DNA (a typical example is EBNA1). In contrast, during latency with a broader spectrum gene expression, the virus-encoded products activate transcription of otherwise silenced cellular genes, which leads to the synthesis of enzymes capable of promoting not only viral but also cellular DNA replication. Thus, the latency-associated proteins block apoptosis and drive host cells towards division and immortalization. Proliferation of hemopoetic cells, which had become gamma herpesvirus DNA carriers, can be initiated and strongly enhanced in the presence of inflammatory cytokines and by virus-encoded analogues of interleukins, chemokines and IFN regulator proteins. At early stages of tumor formation, many proliferating hemopoetic and/or endothelium cells, which had became transcriptionally active under the influence of chemokines and cytokines, may not yet be infected. In contrast, at later stages of oncogenesis, the virus-encoded proteins, inducing false signaling and activating the proliferation pathways, bring the previously infected cells into full transformation burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AIDS:

acquired immunodeficiency virus

AM:

adherent mononuclear (cells)

Apo1:

apoptosis receptor 1 (Fas receptor)

ART:

activator of replication and transcription

BL:

Burkitt’s lymphoma

BRLF:

BamHI R leftward fragment (EBV DNA)

BZLF:

BamHI Z leftward fragment (EBV DNA)

CD:

cluster of differentiation (leukocyte marker)

cdk:

cyclin-dependent kinases

c-jun:

cellular ju-nana (japanese expression for 17 sarcoma virus)

CMV:

cvtomegalovirus

CNS:

centraf nervous system

CREB:

(cAMP-response element)-binding protein

CTAR:

C-terminal activator regions

DD:

death domain

DED:

death effector domain

DS:

dyad symmetry (EBV DNA region)

EBER:

Epstein—Barr encoded nonpolyadenylated RNA

EBNA:

Epstein—Barr nuclear antigen

EBV:

Epstein—Barr virus

FADD:

Fas receptor-associated death domain

Fas:

FS-7 associated cell surface (protein)

FGARAT:

N-formylglycinamide ribotide aminotransferase

FLICE:

FADD-like interleukin converting enzyme inhibitor protein (vFLIP)

FR:

family of repeats

GAS:

gamma-activated sequence

GPCR:

G-protein coupled receptor

HAX-1:

HS-1 associated protein X-1

HHV:

human herpesvirus

HIV:

human immunodeficiency virus

HL:

Hodgkin’s lymphoma

HLA:

human leukocyte antigen

HS-1:

hemopoetic specific protein 1

HSV-1:

herpes simplex virus 1

HVS:

herpesvirus saimiri

ICE:

interleukin-1β converting enzyme

IE:

immediate early proteins

IFN:

interferon

IKK:

inactivator kinases

IL:

interleukin

IM:

infectious mononucleosis

IRF:

IFN regulating factor

IS:

immunosuppression

ITAM:

immunoreceptor tyrosine-based activator motif

K-bZIP:

KSHV analogue of the EBV-specified Zta

KIP/CIP:

kinase inhibitor protein/cyclin inhibitor protein

KS:

Kaposi’s sarcoma

KSHV:

Kaposi’s sarcoma (associated) herpesvirus

LANA:

latent nuclear antigen

LCL:

lymphoblastoid cell lines

LMP:

latent membrane protein

LPD:

lymphoproliferative disorders

LTP:

large tegument protein

MAPK:

mitogen activated protein kinase

MapK/MKK:

mitogen activated kinase/kinase cascade

MCD:

multicentric Castleman disease

MCP:

monocyte chemoattractant proteins

MHV:

murine herpesvirus

NFAT:

nuclear factor activator of T cells

NF-κB:

nuclear factor κB

NIK:

NF-κB inducing kinase

NPC:

nasopharyngeal carcinoma

OBP:

ori-binding protein

PAN:

polyadenylated nuclear RNA species

PEL:

primary effusion lymphoma

Rb:

retinoblastoma (proteins)

RR:

ribonucleotide reductase (genes)

RS:

Reed—Sternberg (cells)

Rta:

R transactivator protein (R fragment encoded)

Sos:

son of sevenless (protein)

STAT:

signaling transduction and transcription

TK:

thymidine kinase

TNF:

tumor necrosis factor

TNFR:

TNF receptor

TPA:

4β,9α,12β,13α,20-pentahydroxytiglia-1,6-dien-3-one 12β-myristate 13α-acetate (‘12-O-tetradecanoylphorbol 13-acetate’)

TRADD:

TNFR-associated death domain

TRAF:

TNFR-associated factor

vCyclin:

viral cyclin

VEGF:

vascular endothelial growth factor

vFLIP:

viral FLICE (caspase 1) inhibitor protein

vGPCR:

viral G-protein coupled receptor

vMIP:

viral macrophage inflammatory protein

VZV:

varicella zoster virus

Zta:

Z (‘Zebra’) transactivator protein (Z fragment encoded)

References

  • Adams J.M., Cory S.: The bcl-2 protein family: arbiters of cell survival.Science281, 1322–1325 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Ahn J.W., Powell K.L., Kellam P., Alber D.G.: Gamma herpesvirus lytic gene expression as characterized by DNA array.J. Virol.76, 6244–6256 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Akhtar M., Bunuan H., Ali M., Godwin J.: Kaposi’s sarcoma in renal transplant patients: ultrastructural and immunoperoxidase study of four cases.Cancer53, 258–266 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Albrecht J.C., Nicholas J., Biller D., Cameron K.R., Biesinger B., Newman C., Wittmann S., Craxton M.A., Coleman H., Fleckenstein B., Honess R.W.: Primary structure of the herpesvirus saimiri genome.J.Virol.66, 5047–5058 (1992).

    PubMed  CAS  Google Scholar 

  • Albrecht J.C.: Primary structure of the herpesvirus ateles genome.J.Virol.74, 1033–1037 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Ambinder R.F., Shah W.A., Rawlings D.R., Hayward G.S., Hayward S.D.: Definition of the sequence requirements for binding of the EBNA1 protein to its palindromic target sites in Epstein—Barr virus DNA.Cell58, 527–535 (1990).

    Google Scholar 

  • Ambinder R.F., Mullen M.A., Chang Y.N., Hayward G.S., Hayward S.D.: Functional domains of Epstein—Barr virus nuclear antigen EBNA1.J.Virol.65, 1466–1478 (1991).

    PubMed  CAS  Google Scholar 

  • Armstrong A.A., Gallagher A., Krajewski A.S.: The expression of the EBV latent membrane protein (LMP1) is independent of CD23 and bcl-2 in Reed—Stemberg cells.Histopathology21, 72–73 (1992).

    PubMed  CAS  Google Scholar 

  • Arvanitakis L., Mesri E.A., Nador R.G., Said J.W., Asch A.S., Knwoles D.M., Cesarman E.: Establishment and characterization of a primary effusion (body cavity based) lymphoma cell line (BC-3) harboring Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein—Barr virus.Blood88, 2648–2654 (1996).

    PubMed  CAS  Google Scholar 

  • Arvanitakis L.A., Geras-Raaka E., Varma A., Gershengorn M.C., Cesarman E.: Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation.Nature385, 347–349 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Askenazi A., Dixit V.M.: Death receptors: signaling and modulation.Science281, 1305–1308 (1998).

    Article  Google Scholar 

  • Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.J., Hatfull G., Hudson G.S., Satchwell S.C., Seguin C., Tufnell P.S., Barrell B.G.: DNA sequence and expression of the B95-8 Epstein—Barr virus genome.Nature310, 207–211 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Baggiolini M., Dewald B., Moser B.: Human chemokines: an update.Ann.Rev.Immunol.15, 675–705 (1997).

    Article  CAS  Google Scholar 

  • Baichwal V.R., Sugden B.: Transformation of Balb/c 3T3 cells by the BNLF-1 gene of Epstein—Barr virus.Oncogene2, 461–467 (1988).

    PubMed  CAS  Google Scholar 

  • Bais C., Santomasso B., Coso O., Arvanitakis L., Raaka E.G., Gutkind J.S., Asch A.S., Cesarman E., Gerhengorn M.C., Mesri E.A.: G-Protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator.Nature391, 86–89 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Bauerle P., Baltimore D.: I-κB: a specific inhibitor of the NF-κB transcription factor.Science242, 540–546 (1988).

    Article  Google Scholar 

  • Bello L.J., Davison A.J., Glenn M.A., Whitehouse A., Rethmeier N., Schultz T.F., Clements J.B.: The human herpesvirus 8 ORF57 gene and its properties.J.Gen.Virol.80, 3207–3215 (2000).

    Google Scholar 

  • van Berkel V., Pretter K., Virgin H.W. IV,Speck S.H.: Identification and initial characterization of the murine gamma herpesvirus 68 gene M3, encoding an abundantly secreted protein.J.Virol.73, 4524–4529 (1999).

    PubMed  Google Scholar 

  • Bernheim A., Berger R., Lenoir G.: Cytogenetic studies on African Burkitt’s lymphoma cell lines; t(8:14), t(2:8) and t(8:22) translocations.Cancer Genet.Cytogenet.3, 307–315 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Bieleski L., Talbot S.: Kaposi’s sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosomal entry site.J.Virol.75, 1864–1869 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Blaškovič D., Stančekova M., Svobodová J., Mistriková J.: Isolation of five strains of herpesviruses from two species of free living small rodents.Acta Virol.24, 468–473 (1980).

    PubMed  Google Scholar 

  • Blaškovič D., Stanekova D., Rajčani J.: Experimental pathogenesis of murine herpesvirus in newborn mice.Acta Virol.28, 225–231 (1984).

    PubMed  Google Scholar 

  • Boshoff C., Endo Y., Collins P.D., Takeuchi Y., Reeves J.D., Schweickart V.L., Siani M.A., Sasaki T., Williams T.J., Gray P.W., Moore P.S., Chang Y., Weiss R.A.: Angiogenic and HIV inhibitory functions of KSHV-encoded chemokines.Science278, 290–294 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Bublot M., Lomonte P., Lequarre A.S., Albrecht J.C., Nicholas J., Fleckenstein B., Pastoret P.P., Thiry E.: Genetic relationships between bovine herpesvirus 4 and the gamma herpesviruses Epstein—Barr virus and herpesvirus saimiri.Virology190, 654–665 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt A.L., Bolem J.B., Kieff E., Longnecker R.: An Epstein—Barr virus transformation-associated membrane protein interacts with Src family tyrosine kinases.J.Virol.66, 5161–5167 (1992).

    PubMed  CAS  Google Scholar 

  • Burkitt D.A.: A children’s cancer dependent upon climatic factors.Nature194, 232–234 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Burysek L., Yeow W.S., Lubyova B., Kellum M., Schafer S.L., Huang Y.Q., Pitha P.M.: Functional analysis of human herpesvirus 8-encoded viral interferon regulatory factor I and its association with cellular interferon regulatory factors and p300.J.Virol.73, 7334–7342 (1999).

    PubMed  CAS  Google Scholar 

  • Cannon J.S., Nicholas J., Orenstein J.M., Mann R.B., Murray P.G., Browning P.J., di Guiseppe J.A., Cesarman E., Hayward G.S., Ambinder R.F.: Heterogeneity of viral IL-6 expression in HHV-8 associated disease.J.Infect.Dis.180, 824–828 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Castleman B., Iverson L., Menedey V.P.: Localized mediastinal lymph-node hyperplasia resembling thymoma.Cancer9, 822–830 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Cesarman E., Nador R.G., Bai F., Bohensky R.A., Russo J.J., Moore P.S., Chang Y., Knowles D.M.: Kaposi’s sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologues which are expressed in Kaposi’s sarcoma and malignant lymphoma.J.Virol.70, 8218–8223 (1996).

    PubMed  CAS  Google Scholar 

  • Chabot-Fletcher M.: Cellular signaling to NF-kB: role in inflammation and therapeutic promise, pp. 23–38 in G.L. Letts, D.W. Morgan (Eds):Inflammatory Process: Molecular Mechanisms and Therapeutic Opportunities. Birkhauser, Basel-Boston-Berlin 2000.

    Google Scholar 

  • Chang Y., Moore P.S., Talbot S.J.: Cyclin encoded by KS herpesvirus.Nature382, 410–411 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Chang J., Ganem D.: On the control of late gene expression in Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8).J.Gen.Virol.81, 2039–2047 (2000).

    PubMed  CAS  Google Scholar 

  • Chi T., Carey M.: The ZEBRA activation domain: modular organization and mechanism of action.Mol.Cell.Biol.13, 7045–7055 (1993).

    PubMed  CAS  Google Scholar 

  • Choi P.H.K., Sven M.W.M., Haung D.P., Lo K.-W., Lee J.C.K.: Nasopharyngal carcinoma: genetic changes, Epstein—Barr virus infection or both. A clinical study of 36 patients.Cancer72, 2873–2878 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Choi J.K., Lee B.S., Shim S.N., Li M., Jung J.U.: Identification of the novel K15 gene at the rightmost end of the Kaposi’s sarcoma associated herpesvirus genome.J.Virol.74, 436–446 (1999).

    Google Scholar 

  • Cohen B.D., Goldstein D.J., Rutlege L., Wass W.C., Lowy D.R., Schlegel R., Schiller J.T.: Transformation specific interaction of the bovine papillomavirus E5 oncoprotein with the platelet derived growth factor receptor domain and the epidermal growth factor receptor cytoplasmic domain.J.Virol.67, 5303–5311 (1993).

    PubMed  CAS  Google Scholar 

  • Craighead J.E.: Epstein-Barr virus (EBV), pp. 117–146 inPathology and Pathogenesis of Human Viral Disease. Academic Press, London-San Diego 2000a.

    Chapter  Google Scholar 

  • Craighead J.E.: Kaposi’s sarcoma associated herpesvirus (KSHV, HHV-8), pp. 171–188 inPathology and Pathogenesis of Human Viral Disease. Academic Press, London-San Diego 2000b.

    Chapter  Google Scholar 

  • Dairaghi D.J., Fan R.A., McMaster B.E., Hanley M.R., Schall T.J.: HHV-8 encoded vMIP-1 selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines.J.Biol.Chem.274, 21569–21574 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Dalla-Favera R., Bregni M., Erikson J., Patterson D., Gallo R.W., Croce C.M.: Humanc-myc gene is located in the region of chromosome 8 that is translocated in Burkitt lymphoma cells.Proc.Natl.Acad.Sci.USA81, 7632–7636 (1982).

    Google Scholar 

  • Damania B., Choi Joong-Kook, Jung J.U.: Signaling activities of gamma herpesvirus membrane proteins.J.Virol.74, 1593–1601 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Desrosiers R.C., Sasseville V.G., Czajak S.C., Zhang X., Mansfield K.G., Kaur A., Johnson R.P., Lackner A.A., Jung J.U.: A herpesvirus of rhesus monkeys related to the human Kaposi’s sarcoma-associated herpesvirus.J.Virol.71, 9764–9769 (1997).

    PubMed  CAS  Google Scholar 

  • Dittmer D., Lagunoff M., Renne R., Staskus K., Haase A., Ganem D.: A cluster of latently expressed genes in Kaposi’s sarcoma-associated herpesvirus.J.Virol.72, 8309–8315 (1998).

    PubMed  CAS  Google Scholar 

  • Dupin N., Fisher C., Kellam P., Ariad S., Tulliez M., Franck N., Van Marck E., Salmon D., Gorin I., Escande J.P., Weiss R.A., Alitalo K., Boshoff C.: Distribution of HHV-8 positive cells in Kaposi’s sarcoma, multicentric Castleman’s disease and primary effusion lymphoma.Proc.Nat.Acad.Sci.USA96, 4546–4551 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Dupin N., Diss T., Kellam P., Tulliez M., Du M.Q., Weiss R.A., Isaacson P.G., Boshoff C.: HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8 positive plasmablastic lymphoma.Blood95, 1406–1412 (2000).

    PubMed  CAS  Google Scholar 

  • van Dyk L.F., Hess J.L., Katz J.D., Jakoby M., Speck S.H., Virgin H.W. IV: The murine gamma herpesvirus 68 vCyclin is an oncogene that promotes cell cycle progression in primary lymphocytes.J.Virol.73, 5119–5122 (1999).

    Google Scholar 

  • Efstathiou S., Ho M., Hall S., Styles C.J., Scott S.D., Gompels U.A.: Murine herpesvirus 68 is genetically related to the gamma herpesviruses Epstein-Barr virus and herpesvirus saimiri.J.Gen.Virol.71, 1365–1372 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Eliopoulos A.G., Blake S.M., Floetmann J.E., Rowe M., Young L.S.: Epstein-Barr virus encoded latent membrane protein 1 activates the JNK pathway through extreme C-terminusvia a mechanism involving TRADD and TRAF2.J.Virol.73, 1023–1035 (1999).

    PubMed  CAS  Google Scholar 

  • Ellis M., Chew Y.P., Fallis L.: Degradation of p27KIP cdk inhibitor triggered by Kaposi’s sarcoma virus cyclin-cdk6 complex.EMBO J.18, 644–653 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ensoli B., Buonaguro L., Barrilari G., Fiorelli V., Gendelman R., Morgan R.A., Wingfield P., Gallo R.C.: Release, uptake and effects of extracellular HIV-Tat protein in induction of Kaposi’s sarcoma.J.Virol.67, 277–287 (1993).

    PubMed  CAS  Google Scholar 

  • Ensoli B., Sturzl M., Monini P.: Cytokine-mediated growth promotion of Kaposi’s sarcoma and primary effusion lymphoma.Cancer Biol.10, 367–381 (2000).

    Article  CAS  Google Scholar 

  • Ensser A., Pflanz R., Fleckenstein B.: Primary structure of the alcephaline herpesvirus 1 genome.J.Virol.71, 6517–6525 (1997).

    PubMed  CAS  Google Scholar 

  • Ernberg I., Falk K., Minarovits J.: The role of methylation in the phenotype dependent modulation of Epstein-Barr nuclear antigen 2 and latent membrane protein genes in cells latently infected with Epstein-Barr virus.J.Gen.Virol.70, 2989–3002 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Falk L., Deinhardt F., Nonoyama M., Wolfe L.G., Bergholz C.: Properties of a baboon lymphotropic herpesvirus related to Epstein-Barr virus.Internat.J.Cancer18, 798–807 (1976).

    Article  CAS  Google Scholar 

  • Farrell P.J.: Epstein-Barr virus, pp. 120–133 in S.J. O’Brien (Ed.):Genetic Maps. Cold Springer Harbor Press, New York 1992.

    Google Scholar 

  • Feederle R., Kost M., Baumann M., Janz A., Hammerschmidt W., Delecluse H.-J.: The Epstein-Barr virus lytic program is controlled by the cooperative functions of two transactivators.EMBO J.19, 3080–3089 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Flint S.J., Enquist L.W., Krug R.M., Racaniello V.R., Skalka A.M.: The transcriptional cascades of DNA viruses, pp. 261–276 inPrinciples of Virology. Molecular Biology, Pathogenesis and Control. ASM Press, Washington (DC) 2000.

    Google Scholar 

  • Friborg J., Kong W., Hottiger M.O., Nabel G.J.: p53 inhibition by the LANA protein of KSHV protects against cell death.Nature402, 889–894 (1999).

    PubMed  CAS  Google Scholar 

  • Friedman-Kien A.: Disseminated Kaposi’s sarcoma syndrome in young homosexual men.J.Am.Acad.Dermatol.5, 468–471 (1981).

    PubMed  CAS  Google Scholar 

  • Frizzera G., Massarelli G., Banks P.M., Rosai J.: A systemic lymphoproliferative disorder with morphologic features of Castleman disease.Am.J.Surg.Pathol.7, 211–231 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Gahn T.A., Schildkraut C.L.: The Epstein-Barr virus origin of plasmid replication,oriP, contains both the initiation and termination sites of DNA replication.Cell58, 527–535 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Gao S.J., Boshoff C., Jayachandra S., Weiss R.A., Chang Y., Moore P.S.: KSHV ORF K9 (vIRF) is an oncogene that inhibits the interferon signaling pathway.Oncogene15, 1979–1986 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gerber P., Nonoyama M., Lucas S., Perlin E., Goldstein L.I.: Oral excretion of Epstein-Barr virus by healthy subjects and patients with infectious mononucleosis.Lancet2, 988–989 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Gilligan K., Sato H., Rajadurai P., Busson P., Young L.S., Rickinson A.L., Tursz T., Raab-Traub N.: Novel transcription from the Epstein-Barr virus terminalEcoRI fragment,DIJhet, in nasopharyngeal carcinoma.J.Virol.64, 4948–4956 (1990).

    PubMed  CAS  Google Scholar 

  • Gires O., Zimber-Strobl U., Gonnella R., Ueffing M., Marschall G., Zridler R., Pich D., Hammerschmidt W.: Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule.EMBO J.16, 6131–6140 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Glickman J., Howe G., Steitz J.: Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in EBV infected cells.J.Virol.62, 902–911 (1988).

    PubMed  CAS  Google Scholar 

  • Gompels U.A., Nicholas J., Lawrence G.: The DNA sequence of human herpesvirus 6: structure, coding content and genome evolution.Virology209, 29–51 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Goodman R.H., Smolik S.: CPB/p300 in cell growth, transformation and development.Genes Dev.14, 1553–1577 (2000).

    PubMed  CAS  Google Scholar 

  • Gregory C.D., Edwards C.F., Milner A., Wiels J., Lipinski M., Rowe M., Tursy T., Rickinson A.B.: Isolation of a normal B cell subset with a Burkitt-like phenotype and transformationin vitro with Epstein-Barr virus.Internat.J.Cancer42, 213–220 (1988).

    Article  CAS  Google Scholar 

  • Grundhoff A., Ganem D.: Mechanisms governing expression of the vFLIP gene of Kaposi’s sarcoma-associated herpesvirus.J.Virol.75, 1857–1863 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Haan K.M., Kwok W.W., Longnecker R., Speck P.: Epstein-Barr virus entry utilizing HLA-DP DR or DQ cofactors.J.Virol.74, 2451–2454 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Henle W., Diehl V., Kohn G., zur Hausen H., Henle G.: Herpes type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells.Science157, 1064–1065 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Herbst H., Stein H., Niedobitek G.: Epstein-Barr virus and CD30 — malignant lymphomas.Crit.Rev.Oncogen.4, 191–239 (1991).

    Google Scholar 

  • Hsu H., Xion J., Goeddel D.V.: The TNF receptor 1-associated protein TRADD signals cell death and vF-κB activation.Cell81, 495–504 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Husain S.M., Usherwood E.J., Dyson H., Coleclough C., Coppola D.L., Woodland M.A., Blackman J.P., Stewart J.P., Sample J.T.: Murine gamma herpesvirus M2 gene is latency associated and its protein is a target for CD8 T lymphocytes.Proc.Nat.Acad.Sci.USA96, 7508–7513 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Inoue N., Dambough T.R., Rapp J.C.: Alpha herpesvirus origin-binding protein homologue encoded by human herpesvirus 6B, a beta herpesvirus, binds to nucleotide sequences that are similar toori regions of alpha herpesviruses.J.Virol.68, 4126–4136 (1994).

    PubMed  CAS  Google Scholar 

  • Izumi K.M., Kieff E.D.: The Epstein-Barr virus oncogenic product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-κB.Proc.Nat.Acad.Sci.USA94, 12592–12597 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Jacoby M.A., Virgin H.W., Speck S.H.: Disruption of the M2 gene of murine gamma herpesvirus 68 alters splenic latency following intranasal, but not intraperitoneal, inoculation.J.Virol.76, 1790–1801 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Jansson A., Masucci M., Rymo L.: Methylation of discrete sites within the enhancer region regulates the activity of the Epstein-Barr virusBamHI W promoter region in Burkitt lymphoma lines.J.Virol.66, 62–69 (1992).

    PubMed  CAS  Google Scholar 

  • Kasolo F.C., Monze M., Obel N., Anderson R.A., French C., Gompels U.A.: Sequence analyses of human herpesvirus 8 strains from both African human immunodeficiency virus-negative and -positive childhood endemic Kaposi’s sarcoma show a close relationship with strains identified in febrile children and variation in the K1 glycoprotein.J.Gen.Virol.79, 3055–3065 (1998).

    PubMed  CAS  Google Scholar 

  • Katano H., Sato Y., Kurata T., Mori S.H., Sata T.: Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi’s sarcoma and multicentric Castleman disease.Virology269, 335–344 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kedes D.H., Lagunoff M., Renne R., Ganem D.: Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi’s sarcoma-associated herpesvirus.J.Clin.Invest.100, 2602–2610 (1997).

    Article  Google Scholar 

  • Kennedy M.M., Biddolph S., Lucas S.B., Howels D.D., Picton S., McGee J.O.D., Silva I., Uhlman V., Luttich K., Leary J.J.: Cyclin D1 expression and HHV8 in Kaposi’s sarcoma.J.Clin.Pathol.52, 569–573 (1999).

    PubMed  CAS  Google Scholar 

  • Kerr B.M., Lear A.L., Rowe M., Croom-Carter D., Young L.S., Rookes S.M., Gallimore P.H., Rickinson A.B.: Three transcriptionally distinct forms of Epstein-Barr virus latency in somatic cell hybrids: cell phenotype dependence of promoter virus usage.Virology187, 189–201 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Kieff E.: Epstein-Barr virus and its replication, pp. 2343–2396 in B.N. Fields, D.M. Knipe, P.M. Howley (Eds):Field’s Virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia-New York-London-Hong Kong-Tokyo 1996.

    Google Scholar 

  • Kim A.L., Maher M., Hayman J.B.: An imperfect correlation between DNA replication activity of Epstein Barr virus nuclear antigen and binding to the nuclear import receptor, Rch/importin alpha.Virology239, 340–351 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kledal T.N., Rosenkilde M.M., Coulin F., Simmons G., Johnsen A.H., Alouani S., Power C.A., Luttichau H.R., Gerstoft J., Clapham P.R., Clark-Lewis I., Wells T.N., Schwartz T.W.: A broad spectrum chemokine antagonist encoded by Kaposi’s sarcoma associated herpesvirus.Science277, 1656–1659 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Klein G., Purtilo D.: Summary: symposium on Epstein-Barr virus induced lymphoproliferative diseases in immunodeficient patients.Cancer Res.41, 4302–4304 (1981).

    PubMed  CAS  Google Scholar 

  • Krysan P.J., Haase S.B., Calos M.B.: Isolation of human sequences that replicate autonomously in human cells.Mol.Cell.Biol.9, 1026–1033 (1989).

    PubMed  CAS  Google Scholar 

  • Lagunoff M., Ganem D.: The structure and coding organization of the genomic termini of Kaposi’s sarcoma-associated herpesvirus.Virology236, 147–154 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Lagunoff M.R., Majett R., Weiss A., Ganem D.: Deregulated signal transduction by the K1 gene product of Kaposi’s sarcoma-associated herpesvirus.Proc.Nat.Acad.Sci.USA96, 5704–5709 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lee H., Gun J., Li M., Choi J.K., DeMaria M., Rosenyweig M., Jung J.U.: Identification of an immunoreceptor tyrosine-based activation motif of K1 transforming protein of Kaposi’s sarcoma-associated herpesvirus.Mol.Cell.Biol.18, 5219–5228 (1998a).

    PubMed  CAS  Google Scholar 

  • Lee H., Veazey R., Williams K., Li M., Guo J., Neipel F., Fleckensteinm B., Lackner A., Desrosiers R.C., Jung J.U.: Deregulation of cell growth by the K1 gene of Kaposi’s sarcoma-associated herpesvirus.Nature Med.4, 435–440 (1998b).

    Article  PubMed  CAS  Google Scholar 

  • Leight E.R., Sugden B.: EBNA1: a protein pivotal to latent infection by Epstein-Barr virus.Rev.Med.Virol.10, 83–100 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Li Q.X., Young L.S., Niedobitek G., Dawson C.W., Birkenbach M., Wang F., Rickinson A.B.: Epstein-Barr virus infection and replication in human epithelial cell system.Nature356, 347–350 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Lu S.-J., Day N.E., Gegos L.: Linkage of nasopharyngeal carcinoma subseptibility locus to the HLA region.Nature346, 470–471 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Lubyova B., Pitha P.M.: Characterization of a novel human herpesvirus 8-encoded protein, vIRF3, that shows homology to viral and cellular interferon regulatory factors.J.Virol.74, 8194–8201 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Mackey D., Sugden B.: The linking regions of EBNA1 are essential for its support of replication and transcription.Mol.Cell.Biol.19, 3349–3359 (1999).

    PubMed  CAS  Google Scholar 

  • Magrath I.: The pathogenesis of Burkitt’s lymphoma.Adv.Cancer Res.55, 133–269 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Magrath I., Jain V., Bhatia K.: Epstein-Barr virus and Burkitt’s lymphoma.Semin.Cancer Biol.3, 285–295 (1992).

    PubMed  CAS  Google Scholar 

  • Mann D.J., Child E.S., Swanton C., Laman H., Jones N.: Modulation of p27/KIP levels by the cyclin encoded by Kaposi’s sarcomaassociated herpesvirus.EMBO J.18, 654–663 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Manning A.M.: Small molecule regulators of AP-1 and NF-κB, pp. 39–52 in G.L. Letts, D.W. Morgan (Eds):Inflammatory Process: Molecular Mechanisms and Therapeutic Opportunities. Birkhauser, Basel-Boston-Berlin 2000.

    Google Scholar 

  • Masood R., Cai J., Zheng T., Smith D.L., Naidu Y., Gill P.C.: Vascular endothelial growth factor — vascular permeability factor is an autocrine growth factor for AIDS-Kaposi’s sarcoma.Proc.Nat.Acad.Sci.USA94, 979–984 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Medveczky M.M., Geck P., Clarke C., Byrnes J., Sullivan J.L., Medveczky P.G.: Arrangement of repetitive sequences in the genome of herpesvirus sylvilagus.J.Virol.63, 1010–1014 (1989).

    PubMed  CAS  Google Scholar 

  • Middleton T., Sugden B.: Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epsten-Barr virus replication protein FBNA1.J.Virol.68, 4067–4071 (1994).

    PubMed  CAS  Google Scholar 

  • Mistríková J., Remeňová A., Leššo J., Stančeková M.: Replication and persistence of murine herpesvirus 72 in lymphatic system and peritoneal blood mononuclear cells of Balb/c mice.Acta Virol.38, 151–156 (1994).

    PubMed  Google Scholar 

  • Mistríková J., Mrmusova M.: Detection of abnormal lymphocytes in the blood of Balb/c mice infected with murine herpesvirus strain 72.Acta Virol.42, 79–82 (1998).

    PubMed  Google Scholar 

  • Mistríková J., Mrmusova M., Ďurmanová V., Rajčani J.: Increased neoplasm development due to immunosuppressive treatment with FK506 in Balb/c mice persistently infected with mouse herpesvirus.Viral Immunol.12, 237–247 (1999).

    PubMed  Google Scholar 

  • Mistríková J., Rašlová H., Mrmusová M., Kúdelová M.: A murine gamma herpesvirus — review.Acta Virol.44, 211–226 (2000).

    PubMed  Google Scholar 

  • Mittnacht S., Boshoff C.: Viral cyclins.Rev.Med.Virol.10, 175–184 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Molden J., Chang Y., You Y., Moore P.S., Goldsmith M.A.: A Kaposi’s sarcoma-associated herpesvirus-encoded cytokine homologue (vIL-6) activates signaling through the shared gp130 receptor subunit.J.Biol.Chem.272, 19625–19631 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Molesworth S.J., Lake C.M., Borza C.M., Turk S.M., Hutt-Fletcher L.M.: Epstein-Barr virus gH is essential for penetration of B cells, but also plays a role in attachment of virus to epithelial cells.J.Virol.74, 6324–6332 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Moore P.S., Chang Y.: Molecular virology of Kaposi’s sarcoma-associated herpesvirus.Phil.Trans.Roy.Soc.London B356, 499–516 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Motokura T., Bloom T., Kim H.G., Juppner H., Ruderman J.V., Kronenberg H.M., Arnold A.: A novel cyclin encoded by abcl-1 linked candidate oncogene.Nature350, 512–525 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Mrmusová M., Horváthová M., Klobušická M., Mistríková J.: Immunotyping of leukocytes in peripheral blood of Balb/c mice infected with mouse herpesvirus isolate 72.Acta Virol.46, 19–24 (2002).

    PubMed  Google Scholar 

  • Muralidhar S., Pumpery A.M., Hassani M., Sadaie M.R., Azumi N., Kishishita M., Brady J.N., Doniger J., Medveczky P., Rosenthal L.J.: Identification of kaposin open reading frame K12 as a human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) transforming gene.J.Virol.72, 4980–4988 (1998).

    PubMed  CAS  Google Scholar 

  • Neipel F., Albrecht J.C., Ensser A., Huang Y.Q., Li J.J., Friedman K.A., Fleckenstein B.: Human herpesvirus 8 encodes a homologue of macrophage inhibitory protein-1 and interleukin-6.J.Virol.71, 839–842 (1997).

    PubMed  CAS  Google Scholar 

  • Nelson P.J., Krenski A.M.: Chemokines, lymphocytes and viruses: what goes around comes around.Curr.Opin.Immunol.10, 265–270 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Nemerow G.R., Wolfert R., McNaughton M.E., Cooper N.R.: Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2).J.Virol.55, 347–351 (1985).

    PubMed  CAS  Google Scholar 

  • Nicholas J.: Evolationary aspects of oncogenic herpesviruses.J.Clin.Pathol.Mol.Pathol.53, 222–237 (2000).

    CAS  Google Scholar 

  • Nicholas J., Ruvolo V.R., Burns W.H., Sandford G., Wan X., Giufo D., Hendrickson S.B., Guo H.G., Hayward G.S., Reitz M.S.: Kaposi’s sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein 1 and interleukin-6.Nature Med.3, 287–292 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Niedobitek G., Young L.S., Sam C.K., Brooks L., Prasad U., Rickinson A.B.: Expression of Epstein-Barr virus genes and of lymphocyte activation molecules in undifferentiated nasopharyngeal carcinomas.Am.J.Pathol.140, 879–887 (1992).

    PubMed  CAS  Google Scholar 

  • Nishi J., Maruyama I.: Increased expression of vascular endothelial growth factor (VEGF) in Castleman disease: proposed pathomechanism for vascular proliferation in the affected lymph node.Leuk.Lymphoma38, 387–394 (2000).

    PubMed  CAS  Google Scholar 

  • Nishikura K., Ar-Rushidi A., Eriksson J., Watt R., Rovera G., Croce C.M.: Differential expression of the normalamd of the translocated humanc-myc oncogenes in B cells.Proc.Nat.Acad.Sci.USA80, 291–296 (1983).

    Article  Google Scholar 

  • O’Connor G., Davies N.: Malignant tumors in African children with special reference to malignant lymphomas.J.Pediatr.56, 526–535 (1960).

    Article  Google Scholar 

  • Ojala P.M., Tianinen M., Salven P., Veikkola T., Castanos-Velez E., Sarid R., Biberfeld P., Makela T.P.: Kaposi’s sarcomaassociated herpesvirus encoded vCyclin dependent kinase 6.Cancer Res.59, 4984–4989 (1999).

    PubMed  CAS  Google Scholar 

  • Palestro G., Turrini F., Pagano M., Chiusa L.: Castleman disease.Adv.Clin.Path.3, 11–22 (1999).

    PubMed  CAS  Google Scholar 

  • Pallesen G., Hamilton-Dutoit S.J., Rowe M., Young L.S.: Expression of Epstein-Barr virus latent gene products in tumor cells of Hodgkin’s disease.Lancet337, 329–332 (1991).

    Article  Google Scholar 

  • Parry C.M., Simas J.P., Smith C.A., Stewart A.C., Minson C.A., Efstathiou S., Alcami A.: A broad spectrum secreted chemokine binding protein encoded by a herpesvirus.J.Exp.Med.191, 573–578 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Pederson C., Gerstoft J., Lundgren J.D.: HIV-associated lymphoma: histopathology and association with Epstein Barr virus genome related to clinical, immunological and prognostic features.Eur.J.Cancer27, 1416–1423 (1991).

    Google Scholar 

  • Phelan A., Clements J.B.: Posttranscriptional regulation in herpes simplex virus.Semin.Virol.8, 309–318 (1998).

    Article  CAS  Google Scholar 

  • Polson A.G., Huang L., Likac D.M., Blethrow J.D., Morgan D.O., Burlingame A.L., Ganem D.: Kaposi’s sarcoma associated herpesvirus K-bZIP protein is phosphorylated by cyclin-dependent kinases.J.Virol.75, 3175–3184 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Pope J.H., Horne M.K., Scott W.: Transformation of fetal human leukocytesin vitro by filtrates of human leukemic cell line containing herpes-like virus.Internat.J.Cancer3, 857–866 (1968).

    Article  CAS  Google Scholar 

  • Ragoczy T., Miller G.: Role of Epstein-Barr virus Rta protein in activation of distinct classes of viral lytic cycle genes.J.Virol.73, 9858–9866 (1999).

    PubMed  CAS  Google Scholar 

  • Rajčáni J., Blaškovič D., Svobodová J., Čiampor F., Hučková D., Staneková D.: Pathogenesis of acute and persistent murine herpesvirus infection in mice.Acta Virol.29, 51–60 (1985).

    PubMed  Google Scholar 

  • Rajčáni J., Bustamante de Contreras L.R., Svobodová J.: Corneal inoculation of murine herpesvirus in mice: the absence of neural spread.Acta Virol.31, 25–30 (1986).

    Google Scholar 

  • Rašlová H., Mistriková J., Kúdelová M., Mishal Z., Sarasin A., Blangy D., Berebbi M.: Immunophenotypic study of atypical lymphocytes generated in peripheral blood and spleen of nude mice after MHV-72 infection.Viral Immunol.13, 313–327 (2000).

    Article  PubMed  Google Scholar 

  • Rašlová H., Berebbi M., Rajčáni J., Sarasin A., Matis J., Kúdelová M.: Susceptibility of mouse mammary glands to murine gamma herpesvirus 72 (MHV-72) infection: evidence of MHV-72 transmissionvia breast milk.Microb.Pathogen.31, 47–58 (2001).

    Article  Google Scholar 

  • Rawlings D.R., Milman G., Hayward S.D., Hayward G.S.: Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNAI) to clustered sites in the plasmid maintenance region.Cell42, 859–868 (1985).

    Article  Google Scholar 

  • van Regenmortel M.H.V., Fauquet C.M., Bishop D.H.L.: Herpesvirus family, pp. 220–226 inVirus Taxonomy: Classification and Nomenclature of Viruses. 7th ICTV Report. Academic Press, San Diego 2000.

    Google Scholar 

  • Rickinson A.B., Kieff E.: Epstein-Barr virus, pp. 2397–2446 in B.N. Fields, D.M. Knipe, P.M. Howley (Eds):Fields’ Virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia-New York-London-Hong Kong-Tokyo 1996.

    Google Scholar 

  • Rochford R., Lutzke M.L., Alfinito R.S., Clavo A., Cardin R.D.: Kinetics of murine gamma herpesvirus 68 gene expression following infection of murine cells in culture and in mice.J.Virol.75, 4955–4963 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Rosdahl L., Larsen S.O., Clemmensen J.: Hodgkin’s disease in patients with previous infectious mononucleosis; 30 years experience.Brit.Med.J.2, 253–256 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Roy D.J., Ebrahimi B.C., Dutia B.M., Nash A.A., Stewart J.P.: Murine gamma herpesvirus M11 gene product inhibits apoptosis and is expressed during virus persistence.Arch.Virol.145, 2411–2420 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Russo J.J., Bohenzky R.A., Chien M.C., Chen J., Yan M., Maddalena D., Parry J.P., Peruzzi D., Edelman I.S., Chang Y., Moore P.S.: Nucleotide sequence of the Kaposi’s sarcoma-associated herpesvirus (HHV8).Proc.Nat.Acad.Sci.USA93, 14862–14867 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Samaniego F., Markham P., Gallo R.C., Ensoli B.: Inflammatory cytokines induce AIDS-Kaposi’s sarcoma like lesion formation in nude mice.J.Immunol.154, 3582–3592 (1995).

    PubMed  CAS  Google Scholar 

  • Sample J., Brooks L., Sample C.: Restricted Epstein-Barr virus protein expression in Burkitt lymphoma is due to a different Epstein-Barr nuclear antigen I transcriptional site.Proc.Nat.Acad.Sci.USA88, 6343–6347 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Sarawar S.R., Lee B.J., Anderson M., Teng Y.C., Zuberi R., von Gejsen S.: Chemokine induction and leukocyte trafficking to the lungs during murine gamma herpesvirus 68 (MHV-68) infection.Virology293, 54–62 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Schultz T.F.: Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8): epidemiology and pathogenesis.Antimicrob.Chemother.45 (Suppl.), 15–27 (2000).

    Article  Google Scholar 

  • Sen P., Baltimore D.: Multiple nuclear factors interact with the immunoglobin enhancer sequences.Cell46, 705–716 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Sharp T.V., Boshoff C.: Kaposi’s sarcoma associated herpesvirus: from cell biology to pathogenesis.Life49, 97–104 (2000).

    PubMed  CAS  Google Scholar 

  • Sharp T.V., Wang H.W., Kuomi A., Hollyman D., Endo Y., Ye H., Du M.Q., Boshoff C.: K15 protein of Kaposi’s sarcomaassociated herpesvirus is latently expressed and binds to HAX-1, a protein with antiapoptotic function.J.Virol.76, 802–806 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Smith P.R., Griffin B.E.: Transcription of the Epstein-Barr virus gene EBNA1 from different promoters in nasopharyngeal carcinoma and B lymphoblastoid cells.J.Virol.66, 706–714 (1992).

    PubMed  CAS  Google Scholar 

  • Song H.Y., Regnier C.H., Kirschning C.J., Goeddel D.V., Rothe M.: Tumor necrosis factor (TNF) mediated cascades: bifurcation of nuclear factor κB and c-jun N-terminal kinase (JNK/SAPK) pathways at the TNF receptor associated factor 2.Proc.Nat.Acad.Sci.USA94, 9792–9796 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Song M.J., Brown H.J., Wu T.-T., Sun R.: Transcription activation of polyadenylated nuclear RNA by Rta in human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus.J.Virol.75, 3129–3140 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Speck P., Haan K.M., Longnecker R.: Epstein-Barr virus entry into cells.Virology277, 1–5 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Speck S.H., Chatila T., Flemington E.: Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene.Trends Microbiol.5, 399–405 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Staskus K.A., Zhong W., Gebhard K., Herndier B., Wang H., Renne R., Beneke J., Pudney J., Anderson D.J., Ganem D., Haase A.T.: Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells.J.Virol.71, 715–19 (1997).

    PubMed  CAS  Google Scholar 

  • Stevenson P.G., Doherty P.C.: Kinetic analysis of the specific host response to a murine gamma herpesvirus.J.Virol.72, 943–949 (1998).

    PubMed  CAS  Google Scholar 

  • Stevenson P.G., Efstathiou S., Doherty P.C., Lehner P.J.: Inhibition of MHC class I-restricted by gamma 2 herpesviruses.Proc.Nat.Acad.Sci.USA97, 8455–8460 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Stewart J.P., Esuewood E.J., Ross A., Dyson H., Nash T.: Lung epithelial cells are a major site of murine gamma herpesvirus persistence.J.Exp.Med.187, 1941–1951 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Stine J.T., Wood C., Hill M., Epp A., Raport C.J., Schweickart V.L., Endo Y., Sasaki T., Simmons G., Boshoff C., Clapham P., Chang Y., Moore P., Gray P.W., Chantry D.: KSHV encoded CC chemokine vMIPIII is a CCR4 agonist, stimulates angiogenesis and selectively chemoattract TH2 cells.Blood95, 1151–1157 (2000).

    PubMed  CAS  Google Scholar 

  • Sunil-Chandra N.P., Efstathiou S., Arno J., Nash A.A.: Virological and pathological features of mice with murine gamma herpesvirus.J.Gen.Virol.73, 2347–2356 (1992a).

    Article  PubMed  Google Scholar 

  • Sunil-Chandra N.P., Efstathiou S., Arno J., Nash A.A.: Murine gamma herpesvirus establishes a latent infection in mouse B lymphocytesin vivo.J.Gen.Virol.73, 3275–3279 (1992b).

    Article  PubMed  Google Scholar 

  • Sunil-Chandra N.P., Fazakerley A.J., Nash A.A.: Lymphoproliferative disease in mice infected with murine gamma herpesvirus 68.Am.J.Pathol.145, 818–826 (1994).

    PubMed  CAS  Google Scholar 

  • Svobodová J., Blaškovič D., Mistríková J.: Growth characteristics of herpesviruses isolated from free living small rodents.Acta Virol.26, 256–263 (1982).

    PubMed  Google Scholar 

  • Swanton C., Mann D.J., Fleckenstein B., Neipel F., Peters G., Jones N.: Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins.Nature390, 187–187 (1997).

    Article  CAS  Google Scholar 

  • Taniguchi M., Lamphier M.S., Tanaka N.: IRF-1: the transcription factor linking the interferon response and oncogenesis.Biochim.Biophys.Acta1333, M9-M17 (1997).

    PubMed  CAS  Google Scholar 

  • Telford E.A.R., Watson M.S., Aird H.C., Perry J., Davison A.J.: The DNA sequence of equine herpesvirus 2.J.Mol.Biol.249, 520–528 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Terry L.A., Stewart J.P., Nash A.A., Fazakerly J.K.: Murine gamma herpesvirus-68 infection of and persistence in the central nervous system.J.Gen.Virol.81, 2535–2543 (2000).

    Google Scholar 

  • Thome M., Schneider P., Hofmann K., Fickenscher H., Meinl E., Neipel F., Mattmann C., Burns K., Bodmer J.L., Schroter M., Scaffidi C., Krammer P.H., Peter M.E., Tschopp J.: Viral FLICE-inhibitory proteins (vFLIPs) prevent apoptosis induced by death receptors.Nature386, 517–521 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Thomson B.J., Efstathiou S., Honess R.W.: Acquisition of the human adeno-associated virus type 2rep gene by human herpesvirus 6.Nature351, 78–80 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Tierney R.J., Steven N., Young L.S., Rickinson A.B.: Epstein-Barr virus latency in blood mononuclear cells: analysis of viral gene transcription during primary infection and in the carrier state.J.Virol.68, 7374–7385 (1994).

    PubMed  CAS  Google Scholar 

  • Tokai N., Fujimoto N.A., Toyoshima Y.: Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle.EMBO J.15, 457–467 (1996).

    PubMed  CAS  Google Scholar 

  • Usherwood E.J., Ross A.J., Allen D.J., Nash A.A.: Murine gamma herpevirus-induced splenomegaly: a critical role for CD4 T cells.J.Gen.Virol. 77, 627–630 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Vilcek J., Sen G.C.: Interferons and other cytokins, pp. 375–399 in B.N. Fields, D.M. Knipe, P.M. Howley (Eds):Fields ‘Virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia 1996.

    Google Scholar 

  • Virgin H.W. IV,Latreille P., Wamsley P., Hallsworth K., Weck K.E., Dal Canto A.J., Speck H.S.: Complete sequence and genomic analysis of murine gamma herpesvirus 68.J.Virol.71, 5894–5904 (1997).

    PubMed  CAS  Google Scholar 

  • Virgin H.W. IV,Presti R.M., Li X.Y., Liu C., Speck S.H.: Three distinct regions of the murine gamma herpesvirus 68 genome are transcriptionally active in latently infected mice.J.Virol.73, 2321–2332 (1999).

    PubMed  CAS  Google Scholar 

  • Wakeling M.N., Roy D.J., Nash A.A., Stewart J.P.: Characterization of the murine gamma herpesvirus ORF74 product: a novel oncogenic G protein-coupled receptor.J.Gen.Virol.82, 1187–1197 (2001).

    PubMed  CAS  Google Scholar 

  • Wang X., Kenyon W.J., Li Q., Mullberg J., Hutt-Fletcher L.M.: Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells.J.Virol.72, 5552–5558 (1998).

    PubMed  CAS  Google Scholar 

  • Wang S., Lui S., Wu M., Geng Y., Wood C.: Kaposi’s sarcoma-associated herpesvirus — human herpesvirus-8 ORF50 gene product contains a potent C-terminal activation domain which activates gene expressionvia a specific target sequence.Arch.Virol.146, 1415–1426 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Weck K.E., Barkon M.L., Yoo L.I., Sfeck H., Virgin H.W. IV: Mature B cells are required for acute splenic infection, but not for establishment of latency by murine gamma herpesvirus.J.Virol.70, 6775–6780 (1996).J.Virol. 70, 6775—6780 (1996).

    PubMed  CAS  Google Scholar 

  • Weck K.E., Kim S.S., Virgin H.W. IV,Speck S.: Macrophages are the major reservoir of latent murine gamma herpesvirus 68 in peritoneal cells.J.Virol.73, 3273–3283 (1999).

    PubMed  CAS  Google Scholar 

  • Whitby D., Howard M., Tenant-Flowers M., Brink N., Copas A., Boshoff C., Hatzioannou T., Suggett F., Aldam D., Denton A., Miller R., Weller I., Weiss R., Tedder R., Schultz T.: Detection of Kaposi’s sarcoma-associated herpesvirus in peripheral blood of HIV-infected individuals as progression to Kaposi’s sarcoma.Lancet346, 799–802 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Yao Q.Y., Rickinson A.B., Epstein M.A.: A re-examination of the Epstein-Barr virus carrier state in healthy seropositive individuals.Internat.J.Cancer35, 35–42 (1985).

    Article  CAS  Google Scholar 

  • Yates J.L., Warren N., Sugden B.A.: Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells.Nature313, 812–815 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Zalani S., Holley-Guthrie E., Kenney S.: Epstein-Barr viral latency is disrupted by the immediate early BRLF1 protein through a cell-specific mechanism.Proc.Nat.Acad.Sci.USA93, 9194–9199 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Zhang S., Nonoyama M.: The cellular proteins that bind specifically to the Epstein-Barr virus belong to a family of plasmid DNA replication origin.Proc.Nat.Acad.Sci.USA91, 2843–2847 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rajčáni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajčáni, J., Kúdelová, M. Gamma herpesviruses: Pathogenesis of infection and cell signaling. Folia Microbiol 48, 291–318 (2003). https://doi.org/10.1007/BF02931360

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931360

Keywords

Navigation