[go: up one dir, main page]

Skip to main content
Log in

An additive problem about powers of fixed integers

  • Published:
Rendiconti del Circolo Matematico di Palermo Aims and scope Submit manuscript

Résumé

SoitA un ensemble fini d'entiers ≥2. Nous étudions les propriétés de l'ensemble Σ(Pow(A)) des entiers positifs qui sont une somme de puissances distinctes d'éléments deA. Erdõs posa le problème suivant: démontrer que Σ(Pow({3,4})) a densité asymtotique superieure positive. Nous démontrons que la fonction qui les énumère vérifieP {3,4}(x)≫x0.9659.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Burr S. A.—Erdõs P.—Graham R. L.—Wen-Ching Li W.,Complete sequences of sets of integer powers, Acta Arithmetica,77 (1996), 133–138.

    MathSciNet  Google Scholar 

  2. Erdõs P.,personal communication, (1996) http://www.unil.ch/ima/docs/Personnes/gmelfi/erdos.html.

  3. Halberstam H.—Roth K. F.,Sequences, Springer-Verlag, Berlin Heidelberg New York, (1983).

    MATH  Google Scholar 

  4. Hardy G. H.—Wright E. M.,An introduction to the theory of numbers, Clarendon Press, Oxford, (1979).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melfi, G. An additive problem about powers of fixed integers. Rend. Circ. Mat. Palermo 50, 239–246 (2001). https://doi.org/10.1007/BF02844979

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02844979

Keywords

Navigation