Summary
The formulas for Planck length, Hawking temperature and Unruh-Davies temperature are derived by using only laws of classical physics together with the Heisenberg principle put in the form ΔE Δx≅▄c/2. Besides, it is shown how the Hawking relation can be deduced from the Unruh relation by means of the principle of equivalence; the deep link between Hawking effect and Unruh effect is in this way clarified.
Similar content being viewed by others
References
Boyer T. H.,Le Scienze,35 (1985) 68.
Caldirola P. andProsperi G. M.,Introduzione alla Fisica Teorica (UTET, Torino) 1982, pp. 509–510.
See, for example,de Witt B. S.,Sci. Am.,249 (1983) 104.
Wheeler J. A.,Geometrodynamics (Academic Press, New York, N.Y.) 1962.
Kruchar K.,J. Math. Phys.,11 (1970) 3322.
Sciama D. W., Candelas P. andDeutsch D.,Adv. Phys.,30 (1981) 327.
Hawking S. W.,Commun. Math. Phys.,43 (1975) 199.
Davies P. C.,J. Phys. A,8 (1975) 609.
Unruh W. G.,Phys. Rev. D,14 (1976) 870.
Boyer T. H.,Phys. Rev. D,21 (1980) 2137.
Boyer T. H.,Phys. Rev. D,29 (1984) 1089.
Boyer T. H.,Phys. Rev. D,29 (1984) 1097.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Scardigli, F. Some heuristic semi-classical derivations of the Planck length, the Hawking effect and the Unruh effect. Nuov Cim B 110, 1029–1034 (1995). https://doi.org/10.1007/BF02726152
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02726152