Abstract
Let
be a family of two-valued functions defined on ann-element set in which each pair of functions in
satisfy a given intersection condition. For certain intersection conditions we determine the maximal value of
.
Similar content being viewed by others
References
R. Ahlswede andG. O. H. Katona, Contributions to the geometry of Hamming spaces,Discrete Math. 17 (1977), 1–22.
N. G. de Bruijn andP. Erdős, On a combinatorial problem,Proc. Konink Nederland Akad. Wetensch. Amsterdam 51 (1948), 421–423.
F. R. K. Chung, R. L. Graham, P. Frankl andJ. Shearer, Some intersection theorems for ordered sets and graphs,to appear.
P. Erdős, Chao Ko andR. Rado, Intersection theorems for systems of finite sets,Quart. J. Math. 2 (1961), 313–320.
R. L. Graham, M. Simonovits andV. T. Sós, A note on the intersection properties of subsets of integers,J. Comb. Th. (A) 28 (1980), 106–116.
V. Rödl,to appear.
M. Simonovits andV. T. Sós, Intersections on structures,Combinatorial Math., Optimal Design and their Applications, Ann. Discrete Math.6 (1980), 301–314.
M. Simonovits andV. T. Sós, Intersection theorems for subsets of integers,European Journal of Comb. 2 (1981), 363–372.
M. Simonovits andV. T. Sós, Graph intersection theorems,Proc. Colloq. Combinatorics and Graph Theory, Orsay, Paris, 1976, 389–391.
M. Simonovits andV. T. Sós, Intersection theorems for graphs II,Coll. Math. Soc. J. Bolyai 18,Combinatorics, Keszthely, Hungary (1976), 1017–1029.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Faudree, R.J., Schelp, R.H. & Sós, V.T. Some intersection theorems on two-valued functions. Combinatorica 6, 327–333 (1986). https://doi.org/10.1007/BF02579259
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02579259