[go: up one dir, main page]

Skip to main content
Log in

Higher order terms in the Melvin-Morton expansion of the colored Jones polynomial

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate a conjecture about the structure of “upper lines” in the expansion of the colored Jones polynomial of a knot in powers of (q−1). The Melvin-Morton conjecture states that the bottom line in this expansion is equal to the inverse Alexander polynomial of the knot. We conjecture that the upper lines are rational functions whose denominators are powers of the Alexander polynomial. We prove this conjecture for torus knots and give experimental evidence that it is also true for other types of knots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, M., Labastida, J.M.F.: Vassiliev Invariants for Torus Knots. Preprint q-alg/9506009

  2. Bar-Natan, D.: On the Vassiliev Knot Invariants. Topology34, 423–472 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bar-Natan, D., Garoufalidis, S.: On the Melvin-Morton-Rozansky Conjecture. Preprint, 1994

  4. Birman, J.S., Lin, X-S.: Knot polynomials and Vassiliev's invariants. Invent. Math.111, 225–270 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Burde, G., Zieschang, H.: Knots. Berlin and New York: de Gruyter, 1985

    MATH  Google Scholar 

  6. Isidro, J.M., Labastida, J.M.F., Ramallo, A.V.: Polynomials for Torus Links from Chern-Simons Gauge Theories, Nucl. Phys.B398, 187–236 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  7. Jeffrey, L.: Chern-Simons-Witten Invariants of Lens Spaces and Torus Bundles, and the Semi-classical Approximation. Commun. Math. Phys.147, 563–604 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Kauffman, L., Lins, S.: Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds.

  9. Melvin, P., Morton, H.: The Coloured Jones Function. Commun. Math. Phys.169, 501–520 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Morton, H.: The Colored Jones Function and Alexander Polynomial for Torus Knots. Math. Proc. Cam. Phil. Soc.117, 129–135 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ohtsuki, T.: A Polynomial Invariant of Rational Homology 3-Spheres. Invent. Math.123, 241–257 (1996)

    MATH  MathSciNet  ADS  Google Scholar 

  12. Rozansky, L.: A Contribution of the Trivial Connection to the Jones Polynomial and Witten's Invariant of 3d Manifolds I. Commun. Math. Phys.175, 275–296 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Rozansky, L. Residue Formulas for the Largek Asymptotics of Witten's Invariants of Seifert Manifolds. The Case ofSU(2). Preprint UMTG-179, hep-th/9412075

  14. Rozansky, L.: Witten's Invariants of Rational Homology Spheres at Prime Values ofK and Trivial Connection Contribution. Preprint UMTG-183, q-alg/9504015, to appear in Commun. Math. Phys.

  15. Rozansky, L.: On Finite Type Invariants of Links and Rational Homology Spheres Derived from the Jones Polynomial and Witten-Reshetikhin-Turaev Invariant. Preprint q-alg/9511025

  16. Rozansky, L.: Onp-adic Convergence of Perturbative Invariants of some Rational Homology Spheres. Preprint q-alg/9601015

  17. Rozansky, L.: The UniversalR-Matrix, Burau Representation and the Melvin-Morton Expansion of the Colored Jones Polynomial. Preprint q-alg/9604005

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Felder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozansky, L. Higher order terms in the Melvin-Morton expansion of the colored Jones polynomial. Commun.Math. Phys. 183, 291–306 (1997). https://doi.org/10.1007/BF02506408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506408

Keywords

Navigation