[go: up one dir, main page]

Skip to main content
Log in

On spanning tree problems with multiple objectives

  • Algorithms For Decision Problems
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We investigate two versions of multiple objective minimum spanning tree problems defined on a network with vectorial weights. First, we want to minimize the maximum ofQ linear objective functions taken over the set of all spanning trees (max-linear spanning tree problem, ML-ST). Secondly, we look for efficient spanning trees (multi-criteria spanning tree problem, MC-ST).

Problem ML-ST is shown to be NP-complete. An exact algorithm which is based on ranking is presented. The procedure can also be used as an approximation scheme. For solving the bicriterion MC-ST, which in the worst case may have an exponential number of efficient trees, a two-phase procedure is presented. Based on the computation of extremal efficient spanning trees we use neighbourhood search to determine a sequence of solutions with the property that the distance between two consecutive solutions is less than a given accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Ahuja, T.L. Magnanti and J.B. Orlin,Network Flows: Theory, Algorithms, and Applications (Prentice-Hall, 1993).

  2. P.M. Camerini, G. Galbiati and F. Maffioli, The complexity of weighted multi-constrained spanning tree problems,Colloquium on the Theory of Algorithms, Pecs (1984).

  3. S. Chung, H.W. Hamacher, F. Maffioli and K.G. Murty, A note on combinatorial optimization with max-linear objective functions, Discr. Appl. Math. 42 (1993) 139–145.

    Article  Google Scholar 

  4. H.W. Corley, Efficient spanning trees, J. Optim. Theory Appl. 45 (1985) 481–485.

    Article  Google Scholar 

  5. Z. Drezner and S.Y. Nof, On optimizing bin packing and insertion plans for assembly robots, IEE Trans. 16 (1984) 262–270.

    Google Scholar 

  6. H.N. Gabow, Two algorithms for generating weighted spanning trees in order, SIAM J. Comp. 6 (1977) 139–150.

    Article  Google Scholar 

  7. A.M. Geoffrion, Proper efficiency and the theory of vector optimization, J. Math. Anal. Appl. 22 (1968) 618–630.

    Article  Google Scholar 

  8. F. Glover, D. Klingman, R. Krishnan and R. Padman, An in-depth empirical investigation of non-greedy approaches for the minimum spanning tree problem, Eur. J. Oper. Res. 56 (1992) 343–356.

    Article  Google Scholar 

  9. R.E. Gomory and T.C. Hu, Multiterminal network flows, SIAM J. Appl. Math. 9 (1961) 551–571.

    Article  Google Scholar 

  10. H.W. Hamacher and C. Hüsselmann, Ranking approach to max-ordering combinatorial optimization and network flows, Report Nr. 246, Fachbereich Mathematik, Universität Kaiserslautern (1993).

  11. H.W. Hamacher and M. Queyranne,K best solutions to combinatorial optimization problems, Ann. Oper. Res. 4 (1985) 123–143.

    Article  Google Scholar 

  12. M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees, Oper. Res. 18 (1970) 1138–1162.

    Article  Google Scholar 

  13. N. Katoh, T. Ibaraki and H. Mine, An algorithm for findingk minimum spanning trees, SIAM J. Comp. 10 (1981) 247–255.

    Article  Google Scholar 

  14. J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. AMS 7 (1956) 48–50.

    Google Scholar 

  15. U. Lebrecht, Max-Lineare Zuordnungsprobleme in der Roboteroptimierung, Diplomarbeit, Universität Kaiserslautern, Fachbereich Mathematik (1991).

  16. S. Nickel, private communication (1992).

  17. R.C. Prim, Shortest connection networks and some generalizations, Bell Syst. Techn. J. 36 (1957) 1389–1401.

    Google Scholar 

  18. G. Righini and A. Colorni, Max-linear combinatorial optimization, Politecnico di Milano, Dipartimento d. Elettronica, report n. 91.005 (1991).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by Deutsche Forschungsgemeinschaft and HCº Contract no. ERBCHRXCT 930087.

Partially supported by Alexander von Humboldt-Stiftung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamacher, H.W., Ruhe, G. On spanning tree problems with multiple objectives. Ann Oper Res 52, 209–230 (1994). https://doi.org/10.1007/BF02032304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02032304

Keywords

Navigation