[go: up one dir, main page]

Skip to main content
Log in

On partitioning rectilinear polygons into star-shaped polygons

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present an algorithm for finding optimum partitions of simple monotone rectilinear polygons into star-shaped polygons. The algorithm may introduce Steiner points and its time complexity isO(n), wheren is the number of vertices in the polygon. We then use this algorithm to obtain anO(n logn) approximation algorithm for partitioning simple rectilinear polygons into star-shaped polygons with the size of the partition being at most six times the optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aho, J. Hopcroft, and J. Ullman,The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

    MATH  Google Scholar 

  2. T. Asano, T. Asano, and H. Imai, Partitioning a Polygonal Region into Trapezoids,Journal of ACM, Vol. 33, No. 2, April 1986, pp. 290–312.

    Article  MathSciNet  Google Scholar 

  3. D. Avis and G. T. Toussaint, An Efficient Algorithm for Decomposing a Polygon into Star-Shaped Polygons,Pattern Recognition, Vol. 13, No. 6, 1981, pp. 395–398.

    Article  MathSciNet  Google Scholar 

  4. B. Chazelle and D. Dobkin, Decomposing a Polygon into its Convex Parts, inProc. 11th Annual ACM Symposium on Theory of Computing, 1979, pp. 38–48.

  5. V. Chvátal, A Combinatorial Theorem in Plane Geometry,Journal of Combinatorial Theory, Series B, Vol. 18, 1975, pp. 39–41.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Fisk, A Short Proof of Chvátal's Watchman Theorem,Journal of Combinatorial Theory, Series B, Vol. 24, 1978, p. 374.

    Article  MathSciNet  Google Scholar 

  7. M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a Simple Polygon,Information Processing Letters, Vol. 7, No. 4, 1978, pp. 175–179.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Kahn, M. Klawe, and D. Kleitman, Traditional Galleries Require Fewer Watchman,SIAM Journal on Algebraic and Discrete Methods, Vol. 4, No. 2, 1983, pp 194–206.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. M. Keil, Decomposing a Polygon into Simpler Components,SIAM Journal on Computing, Vol. 14, No. 4, 1985, pp. 799–817.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. M. Keil and J.-R. Sack. Minimum Decompositions of Polygonal Objects, inComputational Geometry, Ed. G. T. Toussaint, North-Holland, Amsterdam, 1985, pp. 197–216.

    Google Scholar 

  11. D. T. Lee and F. P. Preparata, Computational Geometry—a Survey,IEEE Transactions on Computers, Vol. 33, No. 12, Dec. 1984, pp. 1072–1101.

    Article  MathSciNet  Google Scholar 

  12. J. O'Rourke,Art Gallery Theorems and Algorithms, Oxford University Press, Oxford, 1987.

    MATH  Google Scholar 

  13. L. Pagli, E. Lodi, F. Luccio, C. Mugnai, and W. Lipski, On Two-Dimensional Data Organization 2,Fundamenta Informaticae, Vol. 2, No. 3, 1979.

  14. J. R. Sack, AnO(n logn) Algorithm for Decomposing Simple Rectilinear Polygons into Convex Quadrilaterals, inProc. 20th Allerton Conference, 1982, pp. 64–74.

  15. G. T. Toussaint, Pattern Recognition and Geometrical Complexity, inProc. Fifth International Conference on Pattern Recognition, Dec. 1980, pp. 1324–1347.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. T. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Ntafos, S. On partitioning rectilinear polygons into star-shaped polygons. Algorithmica 6, 771–800 (1991). https://doi.org/10.1007/BF01759071

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01759071

Key words

Navigation