Abstract
Valuations — morphisms from (Σ * n ,·,λ) to ((0, ∞), ·, 1) — are a simple generalization of so-called Bernoulli morphisms. In this paper, we show a characterization of strongly unambiguous regular expressions with the help of valuations and formal power series. We apply these algebraic results to the determination of Hausdorff dimensions of fractals described by regular expressions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Band, C.: Self-similar sets 3. Constructions with sofic systems. Monatshefte Math.108, 89–102 (1989)
Barnsley, M.F.: Fractals Everywhere. Boston: Academic Press 1988
Barnsley, M.F., Elton, J.H., Hardin, D.P.: Recurrent iterated function systems. Constructive Approximation,5, 3–31 (1989)
Bedford, T.: Dimension and dynamics for fractal recurrent sets. J. London Math. Soc (2),33, 89–100 (1986)
Berstel, J., Morcrette, M.: Compact representation of patterns by finite automata. In: Pixm'89 — Computer Graphics in Paris — 2nd Annual Conference on Computer Graphics; Selected Papers, pp. 387–401 (1989)
Berstel, J., Perrin, D.: Theory of Codes. Pure and Applied Mathematics. Orlando: Academic Press 1985
Berstel, J., Reutenauer, C.: Rational Series and Their Languages, volume 12 of EATCS Monographs on Theoretical Computer Science. Berlin, Heidelberg, New York: Springer 1988
Boasson, L., Nivat, M.: Adherences of languages. J. Comput. Syst. Sci.20, 285–309 (1980)
Book, R. et al.: Ambiguity in graphs and expressions. IEEE Trans. Comput.20(2), 149–153 (1971)
Bruggemann-Klein, A.: Regular expressions into finite automata. In: LATIN'92, vol. 483 of LNCS, pp. 87–98, Berlin, Heidelberg, New York: Springer 1992
Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Comput. Sci.120, 197–213 (1993)
Choueka, Y.: Theories of automata onω-tapes: A simplified approach. J. Comput. Syst. Sci.8, 117–141 (1974)
Čulik, K., II and Dube, S.: Affine automata and related techniques for generation of complex images. Theoret. Comput. Sci.116, 373–398 (1993)
Čulik, K., II and Dube, S.: Rational and affine expressions for image description. Discrete Appl. Math.41, 85–120 (1993)
Edgar, G.A.: Measure, Topology, and Fractal Geometry. Undergraduate Texts in Mathematics. Berlin, Heidelberg, New York: Springer 1990
Eilenberg, S.: Automata, Languages, and Machines, Volume A. Pure and Applied Mathematics. New York: Academic Press 1974
Fernau, H.: MRFS-Fraktale aus dem Blickwinkel der regulärenω-Sprachen. In: Thomas, W. (ed) 2. Theorietag ‘Automaten und Formale Sprachen’, vol. 9220 of Technische Berichte, pp. 46–50. Universität Kiel, 1992
Fernau, H.: Infinite iterated function systems. Mathematische Nachrichten169, 79–91 (1994)
Fernau, H.: Iterierte Funtionen, Sprachen und Fraktale. Mannheim: BI-Verlag 1994
Fernau, H.: Valuations of languages, with applications to fractal geometry. Theoret. Comput. Sci.137 (2), 177–217 (1995)
Fernau, H., Staiger, L.: Valuations and unambiguity of languages, with applications to fractal geometry. In: Abiteboul S., Shamir E. (eds) Automata, Languages and Programming, 21st International Colloquium, ICALP 94, vol. 820 of LNCS, pp. 11–27. Berlin, Heidelberg, New York: Springer July 1994
Fernau, H., Staiger, L.: Valuations and unambiguity of languages, with applications to fractal geometry. Technical Report 94-22, RWTH Aachen, 1994
Kuich, W.: On the entropy of context-free languages. Inf. Control (now Information and Computation)16, 173–200 (1970)
Lindner, R., Staiger, L.: Algebraische Codierungstheorie; Theorie der sequentiellen Codierungen, vol. 11 of Elektronisches Rechnen und Regeln. Berlin: Akademie-Verlag 1977
Mandelbrot, B.: The Fractal Geometry of Nature. New York: Freeman 1977
Mauldin, R.D., Williams, S.C.: On the Hausdorff dimension of some graphs. Trans. Am. Math. Soc.298(2): 793–803 (1986)
Rogers, C.A.: Hausdorff Measures. Cambridge at the University Press 1970
Sippu, S., Soisalon-Soinninen, E.: Parsing Theory, Vol. I: Languages and Parsing, vol. 15 of EATCS Monographs on Theoretical Computer Science. Berlin, Heidelberg, New York: Springer 1988
Staiger, L.: A note on connectedω-languages. Elektronische Informationsverarbeitung und Kybernetik (jetzt J. Inf. Process. Cybern. EIK),16(5/6), 245–251 (1980)
Staiger, L.: The entropy of finite-stateω-languages. Problems Control Inf. Theory14(5): 383–392 (1985)
Staiger, L.: Quadtrees and the Hausdorff dimension of pictures. In: Hübler A. (ed) “Geobild'89” Proceedings of the 4th Workshop on Geometrical Problems of Image Processing, vol. 51 of Mathematical Research, pp. 173–178, Georgenthal, 1989, Berlin: Akademie-Verlag
Staiger, L.: Hausdorff dimension of constructively specified sets and applications to image processing. In: Topology, Measures, and Fractals (C. Bandt, J. Flachsmeyer and H. Haase eds.), Proceedings of the Conference on Topology and Measure VI, Warnemünde (Germany), August 1991, vol. 66 Math. Res. pp. 109–120. Berlin: Akademie-Verlag, 1992
Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Information and Computation (formerly Inf. Control)103, 159–194 (1993)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Fernau, H. Valuations, regular expressions, and fractal geometry. AAECC 7, 59–75 (1996). https://doi.org/10.1007/BF01613617
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01613617