[go: up one dir, main page]

Skip to main content
Log in

Cohomological aspects of two-graphs

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bannai, E.: Normal subgroups of 6-transitive permutation groups. J. Algebra42, 46–59 (1976)

    Google Scholar 

  2. Bender, H.: Endlich zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben. Math. Z.104, 175–204 (1968)

    Google Scholar 

  3. Burnside, W.: Theory of Groups of Finite Order. New York: Dover (reprint) 1955

    Google Scholar 

  4. Cameron, P.J.: On basis-transitive Steiner systems. J. London math. Soc. II. Ser.13, 393–399 (1976)

    Google Scholar 

  5. Cameron, P.J.: Automorphism and cohomology of switching classes. J. combinat. Theory, Ser. B,22, 297–298 (1977)

    Google Scholar 

  6. Erdös, P., Rényi, A.: Asymmetric graphs. Acta math. Acad Sci. Hungar.14, 295–315 (1963)

    Google Scholar 

  7. Frucht, R.: Graphs of degree 3 with given abstract group. Canadian J. Math.1, 365–378 (1949)

    Google Scholar 

  8. Hale, M.P., Jr., Shult, E.E.: Equiangular lines, the graph extension theorem, and transfer in triply transitive groups. Math. Z.135, 111–123 (1974)

    Google Scholar 

  9. Higman, D.G.: Remark on Shult's graph extension theorem. In: Finite Groups '72 (Gainesville 1972) (ed. T.M. Gagen, M.P. Hale Jr., E.E. Shult), pp. 80–83. Amsterdam: North Holland 1973

    Google Scholar 

  10. Liskovec, V.A.: Enumeration of Euler graphs. Vescī. Akad. Navuk BSSR Ser. Fīz-Mat. Navuk, 1970, no. 6, 38–46 (1970)

    Google Scholar 

  11. MacLane, S.: Homology. Berlin-Göttingen-Heidelberg: Springer 1963

    Google Scholar 

  12. MacWilliams, F.J.: A theorem on the distribution of weights in a systematic code. Bell System Techn. J.42, 79–84 (1963)

    Google Scholar 

  13. Mallows, C.L., Sloane, N.J.A.: Two-graphs, switching classes, and Euler graphs are equal in number. SIAM J. appl. Math.28, 876–880 (1975)

    Google Scholar 

  14. Mielants, W.: A regular 5-graph. Rend. Acc. Naz. Lincei60, 573–578 (1976)

    Google Scholar 

  15. Robinson, A.W.: Enumeration of Euler graphs. In: Proof Techniques in graph Theory (Ann Arbor 1968) (ed. F. Harary), pp. 47–53. New York: Academic Press 1969

    Google Scholar 

  16. Seidel, J.J.: A survey of two-graphs. In: Colloquio internazionale sulle teorie combinatorie (Roma 1973). Roma: Accademia Nazionale dei Lincei 1976

    Google Scholar 

  17. Seidel, J.J.: Graphs and two-graphs. In: Proceedings of the 5th Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton 1974) (ed. F. Hoffman et al.) pp. 125–143. Winnipeg: Utilitas Mathematica 1974

    Google Scholar 

  18. Taylor, D.E.: Some topics in the theory of finite groups. D.Phil. Thesis, Oxford 1971

  19. Wielandt, H.: Über die Existenz von Normalteilern in endlichen Gruppen. Math. Nachr.18, 274–280 (1958)

    Google Scholar 

  20. Wielandt, H.: Normalteiler in 3-transitiven Gruppen. Math. Z.136, 243–244 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, P.J. Cohomological aspects of two-graphs. Math Z 157, 101–119 (1977). https://doi.org/10.1007/BF01215145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01215145

Navigation