[go: up one dir, main page]

Skip to main content
Log in

Free boson representation of\(U_q (\widehat{sl}_3 )\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A representation of the quantum affine algebra\(U_q (\widehat{sl}_3 )\) of an arbitrary levelk is constructed in the Fock module of eight boson fields. This realization reduces the Wakimoto representation in theq → 1 limit. The analogues of the screening currents are also obtained. They commute with the action of\(U_q (\widehat{sl}_3 )\) modulo total differences of some fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies B., Foda O., Jimbo M., Miwa T., and Nakayashiki A., Diagonalization of the XXZ Hamiltonian by vertex operators,Comm. Math. Phys. 151, 89–154 (1993).

    Google Scholar 

  2. Frenkel, I. B. and Reshetikhin, N. Yu., Quantum affine algebras and holonomic difference equations,Comm. Math. Phys. 146, 1–60 (1992).

    Google Scholar 

  3. Jimbo, M., Miki, K., Miwa, T., and Nakayashiki, A., correlation functions of the XXZ model for Δ < - 1,Phys. Lett. A168, 256–263 (1992).

    Google Scholar 

  4. Frenkel, I. B. and Jing, N. H., Vertex representations of quantum affine algebras,Proc. Nat'l. Acad. Sci. USA 85, 9373–9377 (1988).

    Google Scholar 

  5. Idzumi, M., Iohara, K., Jimbo, M., Miwa, T., Nakashima, T., and Tokihiro, T., Quantum affine symmetry in vertex models,Internat. J. Modern Phys. A8, 1479–1511 (1993).

    Google Scholar 

  6. Shiraishi, J., Free boson representation of\(U_q (\widehat{sl}_2 )\),Phys. Lett. A 171, 243–248 (1992); Kato, A., Quano, Y-H., and Shiraishi, J., Free boson representation ofq-vertex operators and their correlation functions, to appear inComm. Math. Phys.

    Google Scholar 

  7. Matsuo, A., Free field realization of quantum affine algebra\(U_q (\widehat{sl}_2 )\), Preprint Nagoya Univ. (1992); Free field realization ofq-deformed primary fields for\(U_q (\widehat{sl}_2 )\), Preprint Nagoya Univ. (1992). Abada, A., Bougourzi, A. H., and El Gradechi, M. A., Deformation of the Wakimoto construction, Preprint (1992); Kimura, K., On free boson representation of the quantum affine algebra\(U_q (\widehat{sl}_2 )\), Preprint RIMS-910 (1992).

  8. Drinfeld, V. G., A new realization of Yangians and quantum affine algebras,Soviet Math. Doklady 36, 212–216 (1988).

    Google Scholar 

  9. Wakimoto, M., Fock representations of the affine Lie algebraA (1)1 Comm. Math. Phys. 104, 605–609 (1986); Bershadsky, M. and Ooguri, H., Hidden SL(n) symmetry in conformal field theories,Comm. Math. Phys. 126, 49-83 (1989).

    Google Scholar 

  10. Friedan, D., Martinec, E., and Shenker, S., Conformal invariance, supersymmetry and string theory,Nuclear Phys. B271, 93–165 (1986).

    Google Scholar 

  11. Feigin, B. L. and Frenkel, E. V., Affine Kac-Moody algebras and semi-infinite flag manifolds,Comm. Math. Phys. 128, 161–189 (1990); Ito, K. and Kazama, Y., Feigin-Fuchs representation ofA (1) n affine Lie algebra and the associated parafermionic algebra,Modern Phys. Lett A5, 215-224 (1990); Kuwahara, M. and Suzuki, H., Coset conformal models ofW-algebra and their Feigin-Fuchs construction,Phys. Lett. B 235, 52–56 (1990).

    Google Scholar 

  12. Awata, H., Noumi, M., and Odake, S., Heisenberg realization for\(U_q (\widehat{sl}_n )\) on the flag manifold, Preprint YITP/K-1016 (1993).

  13. Matsuo, A., Jackson integrals of Jordan-Pochhammer type and Knizhnik-Zamolodchikov equations, Preprint Nagoya Univ. (1992); Quantum algebra structure of certain Jackson integrals, Preprint Nagoya Univ. (1992).

  14. Reshetikhin, N., Jackson-type integrals, bethe vectors, and solutions to a difference analog of the Knizhnik-Zamolodchikov system,Lett. Math. Phys. 26, 153 (1992).

    Google Scholar 

  15. Awata, H., Odake, S., and Shiraishi, J., in preparation.

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Department of Physics, University of Tokyo, Tokyo 113, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awata, H., Odake, S. & Shiraishi, J. Free boson representation of\(U_q (\widehat{sl}_3 )\) . Lett Math Phys 30, 207–216 (1994). https://doi.org/10.1007/BF00805853

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00805853

Mathematics Subject Classifications (1991)

Navigation