Abstract
By using the free field realizations, we analyze the representation theory of theW 1+∞ algebra withc = 1. The eigenvectors for the Cartan subalgebra ofW 1+∞ are parametrized by Young diagrams, and explicitly written down byW 1+∞ generators. Moreover, their eigenvalues and full character formula are also obtained.
Similar content being viewed by others
References
See references in Bouwknegt, P. and Schoutens, K.,Phys. Rep. 223, 183–276 (1993).
Fukuma, M., Kawai, H., and Nakayama, R.,Comm. Math. Phys. 143, 371–403 (1991).
Itoyama, H. and Matsuo, Y.,Phys. Lett. B 262, 233–239 (1991).
Kac, V. and Schwarz, A.,Phys. Lett. B 257, 329–334 (1991). Schwarz, A.,Modern Phys. Lett. A 6, 2713-2726 (1991).
Goeree, J.,Nuclear Phys. B 358, 737–757 (1991).
Iso, S., Karabali, D., and Sakita, B.,Phys. Lett. B 296, 143–150 (1992).
Cappelli, A., Trugenberger, C., and Zemba, G.,Nuclear Phys. B 396, 465–490 (1993); Classification of quantum Hall universality classes by 298-11 + ∞ Symmetry, Preprint MPI-PH-93-75, November 1993 (hepth/9310181).
Bergshoeff, E., Pope, C., Romans, L., Sezgin, E., and Shen, X.,Phys. Lett. B 245, 447–452 (1990).
Kac, V. and Radul, A.,Comm. Math. Phys. 157, 429–457 (1993).
Pope, C., Romans, L., and Shen, X.,Nuclear Phys. B 339 191–221 (1990).
Date, E., Jimbo, M., Kashiwara, M., and Miwa, T., in M. Jimbo and T. Miwa (eds),Proc. RIMS Sympos. Nonlinear Integrable Systems - Classical Theory and Quantum Theory, World Scientific, Singapore, 1983, pp. 39–120.
Odake, S.,Internat. J. Modern Phys. A 7, 6339–6355 (1992).
Matsuo, Y., Free fields and quasi-finite representation ofW 1+∞ algebra, Preprint UT-661, December 1993 (hepth/9312192).
Bakas, I., and Kiritsis, E.,Nuclear Phys. B 343, 185–204 (1990);Modern Phys. Lett. A 5, 2039-2050 (1990).
Odake, S., and Sano, T.,Phys. Lett. B 258, 369–374 (1991).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Awata, H., Fukuma, M., Odake, S. et al. Eigensystem and full character formula of theW 1+∞ algebra withc = 1. Lett Math Phys 31, 289–298 (1994). https://doi.org/10.1007/BF00762791
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00762791