[go: up one dir, main page]

Skip to main content
Log in

Eigensystem and full character formula of theW 1+∞ algebra withc = 1

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

By using the free field realizations, we analyze the representation theory of theW 1+∞ algebra withc = 1. The eigenvectors for the Cartan subalgebra ofW 1+∞ are parametrized by Young diagrams, and explicitly written down byW 1+∞ generators. Moreover, their eigenvalues and full character formula are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See references in Bouwknegt, P. and Schoutens, K.,Phys. Rep. 223, 183–276 (1993).

    Google Scholar 

  2. Fukuma, M., Kawai, H., and Nakayama, R.,Comm. Math. Phys. 143, 371–403 (1991).

    Google Scholar 

  3. Itoyama, H. and Matsuo, Y.,Phys. Lett. B 262, 233–239 (1991).

    Google Scholar 

  4. Kac, V. and Schwarz, A.,Phys. Lett. B 257, 329–334 (1991). Schwarz, A.,Modern Phys. Lett. A 6, 2713-2726 (1991).

    Google Scholar 

  5. Goeree, J.,Nuclear Phys. B 358, 737–757 (1991).

    Google Scholar 

  6. Iso, S., Karabali, D., and Sakita, B.,Phys. Lett. B 296, 143–150 (1992).

    Google Scholar 

  7. Cappelli, A., Trugenberger, C., and Zemba, G.,Nuclear Phys. B 396, 465–490 (1993); Classification of quantum Hall universality classes by 298-11 + ∞ Symmetry, Preprint MPI-PH-93-75, November 1993 (hepth/9310181).

    Google Scholar 

  8. Bergshoeff, E., Pope, C., Romans, L., Sezgin, E., and Shen, X.,Phys. Lett. B 245, 447–452 (1990).

    Google Scholar 

  9. Kac, V. and Radul, A.,Comm. Math. Phys. 157, 429–457 (1993).

    Google Scholar 

  10. Pope, C., Romans, L., and Shen, X.,Nuclear Phys. B 339 191–221 (1990).

    Google Scholar 

  11. Date, E., Jimbo, M., Kashiwara, M., and Miwa, T., in M. Jimbo and T. Miwa (eds),Proc. RIMS Sympos. Nonlinear Integrable Systems - Classical Theory and Quantum Theory, World Scientific, Singapore, 1983, pp. 39–120.

    Google Scholar 

  12. Odake, S.,Internat. J. Modern Phys. A 7, 6339–6355 (1992).

    Google Scholar 

  13. Matsuo, Y., Free fields and quasi-finite representation ofW 1+∞ algebra, Preprint UT-661, December 1993 (hepth/9312192).

  14. Bakas, I., and Kiritsis, E.,Nuclear Phys. B 343, 185–204 (1990);Modern Phys. Lett. A 5, 2039-2050 (1990).

    Google Scholar 

  15. Odake, S., and Sano, T.,Phys. Lett. B 258, 369–374 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awata, H., Fukuma, M., Odake, S. et al. Eigensystem and full character formula of theW 1+∞ algebra withc = 1. Lett Math Phys 31, 289–298 (1994). https://doi.org/10.1007/BF00762791

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762791

Mathematics Subject Classifications (1991)

Navigation