[go: up one dir, main page]

Skip to main content
Log in

Single electron charging effects in high-resistance In2O#x2212;x#x2212;x#x2212;x wires

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on our measurements of the transport properties of 0.75 μm long insulating indium oxide wires and rings. These devices have no apparent tunnel barriers, yet they exhibit two properties at low temperatures which are characteristic of series arrays of small capacitance tunnel junctions: highly non-linear IV characteristics and a zero-bias conductance which is periodic in a voltage applied by means of a lateral gate. Two types of samples can be distinguished, based on the behaviour of the conductance oscillations at low temperatures. For the first type, the structure of the oscillations remains periodic down to our lowest temperatures, similar to the data from the tunnel junction arrays. For the second type, lowering the temperature results in a transition from periodic to quasi-periodic conductance peaks. A phenomelogical model based on the orthodox theory of the Coulomb blockade is able to account for most of our observations. The temperature and magnetic field dependence of these effects suggest that they are due to the influence of single electron charging on transport through the localized electron states in the indium oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent series of review articles, seeMesoscopic Phenomena in Solids, B. L. Altshuler, P. A. Lee, and R. A. Webb, eds. [Elsevier, Amsterdam (1991)], and references therein.

    Google Scholar 

  2. S. Washburn and R. A. Webb,Rep. Prog. Phys. 55, 1311 (1992), and references therein.

    Google Scholar 

  3. T. Ando, A. B. Fowler, and F. Stern,Rev. Mod. Phys. 54, 437 (1982); C. W. J. Beenakker and H. van Houten,Solid State Physics, Vol. 44, H. Ehrenreich and D. Turnbull, eds. [Academic Press, New York, 1991], pp. 1–228; and references therein.

    Google Scholar 

  4. A. B. Fowler, A. Hartstein, and R. A. Webb,Phys. Rev. Lett. 48, 196 (1982); A. B. Fowler, J. J. Wainer, and R. A. Webb,IBM J. Res. Dev. 32, 372 (1988).

    Google Scholar 

  5. P. A. Lee and T. V. Ramakrishnan,Rev. Mod. Phys. 57, 287 (1985); G. Bergmann,Phys. Rep. 107, 1 (1984); B. L. Al'tshuler and A. G. Aronov,Electron-Electron Interactions in Disordered Systems, A. L. Efros and M. Pollak, eds. (Elsevier, Amsterdam, 1985); P. A. Lee, A. D. Stone, and H. Fukuyama,Phys. Rev. B 35, 1039 (1987).

    Google Scholar 

  6. See, for example,Electronic Properties of Disordered Semiconductors, B. I. Shlovkii and A. L. Efros, eds.Springer Series in Solid State Sciences, Vol. 45 (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  7. See, for example,Hopping Transport in Solids, M. Pollak and B. Shlovskii, eds. (Elsevier, 1991).

  8. For recent experimental work on resonant tunneling through localized states, see, for example, A. B. Fowler, G. L. Timp, J. J. Wainer, and R. A. Webb,Phys. Rev. Lett. 57, 138 (1986); T. E. Kopley, P. L. McEuen, and R. G. Wheeler,Phys. Rev. Lett. 61, 1654 (1988); D. Popovic, A. B. Fowler, and S. Washburn,Phys. Rev. Lett. 67, 2870 (1991); D. Ephron, Y. Xu, and M. R. Beasley,Phys. Rev. Lett. 69, 3112 (1992); and references therein. For theoretical work, see T. K. Ng and P. A. Lee,Phys. Rev. Lett. 61, 1768 (1988); L. I. Glazman and K. A. Matveev,Pisma Zh. Eksp. Teor. Fiz. 48, 403 (1989) [JETP Lett. 48, 445 (1989)]; L. I. Glazman and M. E. Raikh,Pisma Zh. Eksp. Teor. Fiz. 47, 452 (1988) [JETP Lett. 47, 452 (1988)]; and references therein.

    Google Scholar 

  9. A. L. Efros and B. I. Shklovskii,J. Phys. C 8, L49 (1975); A. L. Efros,J. Phys. C 9, 2021 (1976); A. L. Efros,Phil. Mag. B 43, 829 (1981).

    Google Scholar 

  10. See, for example,Electron-Electron Interactions in Disordered Systems, A. L. Efros and M. Pollak, eds. (Elsevier, Amsterdam, 1985);Localisation and Interaction in Disordered Metals and Doped Semiconductors, Proceedings of the Thirty-First Scottish Universities Summer School in Physics, D. M. Finlayson, ed. (SUSSP Publications, 1986); and references therein.

    Google Scholar 

  11. A. B. Fowler, J. J. Wainer, and R. A. Webb, article inHopping Transport in Solids, M. Pollak and B. Shklovskii, eds. (Elsevier, 1991), and references therein.

  12. O. Faran and Z. Ovadyahu,Phys. Rev. B 38, 5457 (1988).

    Google Scholar 

  13. F. P. Milliken and Z. Ovadyahu,Phys. Rev. Lett. 65, 911 (1990).

    Google Scholar 

  14. V. Chandrasekhar, Z. Ovadyahu, and R. A. Webb,Phys. Rev. Lett. 67, 2862 (1991).

    Google Scholar 

  15. A number of review articles and compilations have recently appeared which discuss single electron charging effects in tunnel junction arrays and semiconducting devices. See, for example, D. V. Averin and K. K. Likharev,Mesoscopic Phenomena in Solids, B. L. Altshuler, P. A. Lee, and R. A. Webb, eds. [Elsevier, Amsterdam (1991)];Single Charge Tunneling, H. Grabert and M. H. Devoret, eds. (Plenum, New York, 1991);Granular Electronics, D. K. Ferry, ed. NATO ASI Series B (Plenum, New York, 1991); and references therein. Some of the earlier work on Si MOSFETs (see Ref. 27) is similar to ours in that these devices had no artificially fabricated tunnel barriers as well. However, single electron charging effects in these devices are now believed to be due to the presence of two large tunnel barriers caused by large fluctuations in the impurity potential (Ref. 26). This is different than our samples, in which the microscopic disorder is on a much smaller size scale. Please see the detailed discussion in Sec. V.

    Google Scholar 

  16. Z. Ovadyahu,J. Phys. C 19, 5187 (1987).

    Google Scholar 

  17. L. I. Glazman and R. I. Shekhter,J. Phys. Condens. Matter. 1, 5811 (1989).

    Google Scholar 

  18. T. A. Fulton and G. J. Dolan,Phys. Rev. Lett. 59, 109 (1987).

    Google Scholar 

  19. P. A. Lee and D. S. Fisher,Phys. Rev. Lett. 47, 882 (1981).

    Google Scholar 

  20. V. L. Nguen, B. Z. Spivak, and B. I. Shlovskii,Pisma Zh. Eksp. Teor. Fiz. 43, 35 (1986) [JETP Lett. 43, 44 (1986)].

    Google Scholar 

  21. L. I. Glazman and V. Chandrasekhar,Europhys. Lett. 19, 623 (1992); I. M. Ruzin, V. Chandrasekhar, E. I. Levinson, and L. I. Glazman,Phys. Rev. B 45, 13469 (1992).

    Google Scholar 

  22. The numerical simulations in this paper are based on a Monte Carlo routine suggested by N. S. Bakhavalovet al., Zh. Eksp. Teor. Fiz. 95, 1010 (1989).

    Google Scholar 

  23. K. K. Likharov,IBM J. Res. Dev. 32, 144 (1988).

    Google Scholar 

  24. P. Delsing, K. K. Likharev, L. S. Kuzmin, and P. Claeson,Phys. Rev. Lett. 63, 1861 (1989); L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E. Mooij, H. Pothier, D. Esteve, C. Urbina, and M. H. Devoret,Phys. Rev. Lett. 64, 2691 (1990); L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon,Phys. Rev. Lett. 67, 1626 (1991). See also Ref. 15.

    Google Scholar 

  25. H. van Houten and C. W. J. Beenakker,Phys. Rev. Lett. 63, 1893 (1989).

    Google Scholar 

  26. J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antonadis,Phys. Rev. Lett. 62, 583 (1989); S. B. Field, M. A. Kastner, U. Meirav, J. H. F. Scott-Thomas, D. A. Antoniadis, H. I. Smith, and S. J. Wind,Phys. Rev. B 42, 3523 (1990). Recently, experiments on disordered GaAs heterostructure devices without tunnel barriers have also been performed: see A. A. M. Staring, H. van Houten, C. W. J. Beenakker, and C. T. Foxon,Phys. Rev. B 45, 9222 (1992).

    Google Scholar 

  27. L. S. Kuzmin, P. Delsing, T. Claeson, and K. K. Likharev,Phys. Rev. Lett. 62, 2539 (1989); L. J. Geerligs, V. F. Anderegg, and J. E. Mooij,Physica B 165/166, 973 (1990).

    Google Scholar 

  28. D. V. Averin and K. K. Likharev,J. Low Temp. Phys. 62, 345 (1986); K. K. Likharev,IEEE Trans. Magn. 23, 1142 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekhar, V., Webb, R.A. Single electron charging effects in high-resistance In2O#x2212;x#x2212;x#x2212;x wires. J Low Temp Phys 97, 9–54 (1994). https://doi.org/10.1007/BF00752978

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752978

Keywords

Navigation