[go: up one dir, main page]

Skip to main content
Log in

New methods for nuclear cooling into the microkelvin regime

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe the philosophy and practice of a new method of nuclear cooling in which the copper refrigerant is immersed directly in the3He sample to be cooled using a guard cell configuration. The method has been used to cool liquid3He to ∼120 µK. We also describe a variant of the method intended for cooling metallic samples, by which a platinum NMR thermometer has been cooled to ∼13 µK. Finally, in an appendix we suggest a very simple nuclear cooling method utilizing the copper flakes used in the manufacture of paint, which will cool liquid3He to around 1 mK with a minimum of cryogenic effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kurti, F. N. Robinson, F. E. Simon, and D. A. Spohr,Nature 178, 450 (1956).

    Google Scholar 

  2. R. Hunik, E. Bongers, J. A. Konter, and W. J. Huiskamp,J. Phys. (Paris)39, C6–1155 (1978); R. M. Mueller, C. Buchal, H. R. Folle, M. Kubota, and F. Pobell,Cryogenics 20, 395 (1980); H. Ishimoto, N. Nishida, T. Furabayashi, M. Shinohara, Y. Takano, Y.-I. Miura, and K. Ono,Low Temp. Phys. 55, 17 (1984).

    Google Scholar 

  3. J. P. Harrison,J. Low Temp. Phys. 37, 467 (1979).

    Google Scholar 

  4. A. R. Rutherford, J. P. Harrison, and M. J. Stott,J. Low Temp. Phys. 55, 157 (1984).

    Google Scholar 

  5. R. C. M. Dow, A. M. Guénault, and G. R. Pickett,J. Low Temp. Phys. 47, 477 (1982).

    Google Scholar 

  6. D. I. Bradley, T. W. Bradshaw, A. M. Guénault, V. Keith, B. G. Locke-Scobie, I. E. Miller, G. R. Pickett, and W. P. Pratt, Jr.,Cryogenics 22, 296 (1982).

    Google Scholar 

  7. A. I. Ahonen, M. T. Haikala, M. Krusius, and O. V. Lounasmaa,Phys. Rev. Lett. 33, 628 (1974).

    Google Scholar 

  8. Jean Rooke, University of Leeds, Private Communication.

  9. C. Buchal, J. Hanssen, R. M. Mueller, and F. Pobell,Rev. Sci. Instrum. 49, 1360 (1978).

    Google Scholar 

  10. N. S. Lawson,Cryogenics 22, 667 (1982).

    Google Scholar 

  11. D. I. Bradley, A. M. Guénault, V. Keith, G. R. Pickett, and W. P. Pratt, Jr.,J. Phys. C: Solid State Phys. 30, L501 (1982).

    Google Scholar 

  12. A. M. Guénault, V. Keith, C. K. Kennedy, and G. R. Pickett,Phys. Rev. Lett. 50, 522 (1983).

    Google Scholar 

  13. R. Mueller, H. Chocholacs, C. Buchal, M. Kubota, J. R. Owers-Bradley, and F. Pobell, inProceedings 1983Symposium on Quantum Fluids and Solids, E. D. Adams and G. G. Ihas, eds. (AIP Conference Proceedings, No. 103), p. 192.

  14. M. Schwark, F. Pobell, W. P. Halperin, C. Buchal, J. Hanssen, M. Kubota, and R. M. Mueller,J. Low Temp. Phys. 53, 685 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, D.I., Guénault, A.M., Keith, V. et al. New methods for nuclear cooling into the microkelvin regime. J Low Temp Phys 57, 359–390 (1984). https://doi.org/10.1007/BF00681199

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681199

Keywords

Navigation