Abstract
The primary aerial surfaces of plant species from many families (e.g. Pinaceae, Liliaceae, Ranunculaceae, Papaveraceae) are covered by epicuticular tubules 5–20 μm long and 0.5 μn in diameter. The composition, mechanism of growth and molecular structure of this type of epicuticular aggregates have been studied. Pure nonacosan-10-ol extracted from Picea pungens needle surfaces formed, in vitro, tubular crystals like those occurring in vivo. This crystal habit was obtained irrespective of the type of solvent or substratum, if the solvent was evaporated within minutes. This shows that tubules of nonacosan-10-ol are formed in the kinetic regime of crystallization (limited by the diffusion of molecules from the solution to the crystal surface). Slow evaporation of the solvent or crystallization from the melt resulted in rhombic scales. These planar crystals represent the thermodynamic, stable modification of native nonacosan-10-ol. Homologous impurities in natural nonacosan-10-ol (3–14%) had no effect on the formation of the tubules. However, racemic nonacosan-10-ol invariably crystallized in scales. The phase behaviour of mixtures of natural nonacosan-10-ol and its synthetic racemate as well as synthetic (S)-nonacosan-10-ol provided evidence for the presence of the pure (S)-enantiomer on plant surfaces. The findings are discussed in terms of the mechanisms leading to epicuticular tubules consisting of nonacosan-10-ol and their molecular structure. Crystal structures for the pure enantiomer and the racemate of nonacosan-10-ol are proposed. It is concluded that the principles responsible for the formation of tubules are both the special molecular geometry of the naturally occurring (S)-nonacosan-10-ol and the mobility barrier of the plant cuticle. Further specific biological processes are not necessary for the formation of (S)-nonacosan-10-ol tubules. The alterations of epicuticular structures during ageing or the impact of pollutants are explained as spontaneous transitions between two crystal modifications of (S)-nonacosan-10-ol.
Similar content being viewed by others
Abbreviations
- O⊥ :
-
orthorhombic subcell
References
Abrahamsson, S., Ställberg-Stenhagen, S., Stenhagen, E. (1963) The higher saturated branched chain fatty acids. In: Prog. Chem. Fats Other Lipids, vol. 7, pp 59–88, Holman R.T., Malkin, T., eds. Pergamon Press, Oxford
Abrahamsson, S., Dahlen, B., Löfgren, H., Pascher, I. (1978) Lateral packing of hydrocarbon chains. Prog. Chem. Fats Other Lipids 16, 125–143
Baker, E.A. (1982) Chemistry and morphology of plant epicuticular waxes. In: The plant cuticle, pp. 139–165, Cutler, D.F., Alvin, K.L., Price, C.E., eds. Academic Press, London
Barthlott, W. (1990) Scanning electron microscopy of the epidermal surface in plants. In: The systematics association special volume no. 41, Scanning electron microscopy in taxonomy and functional morphology, pp. 69–94, Claugher, D., ed. Clarendon Press, Oxford
Barthlott, W., Frölich, D. (1983) Mikromorphologie und Orientierungsmuster epicuticularer Wachs-Kristalloide: Ein neues systematisches Merkmal bei Monokotylen. Plant Syst. Evol. 142, 171–185
Chambers, T.C., Ritchie, I.M., Booth, M.A. (1976) Chemical models for plant wax morphogenesis. New Phytol. 77, 43–49
Chibnall, A.C., Piper, S.H., Pollard, A., Smith, J.A.B., Williams, E.F. (1931) The wax constituents of the apple cuticle. Biochem. J. 25, 2095–2110
Clark, J.B., Lister, G.R. (1975) Photosynthetic action spectra of trees. 2. The relationship of cuticle structure to the visible and UV spectral properties of needles from four coniferous species. Plant Physiol. 55, 407–413
de Bary, A. (1871) Über die Wachsüberzüge der Epidermis. Bot. Ztg. 29, 130–176
Fuhrhop, J.-H., Krull, M. (1991) Self-assembling lipid membranes from planar bilayer sheets to cloth-like aggregates of micellar fibers. In: Frontiers in supramolecular organic chemistry and photochemistry, pp. 223–249, Schneider, H.-J., Dürr, H., eds. Verlag Chemie, Weinheim
Fuhrhop, J.-H., Schnieder, P., Rosenberg, J., Boekema, E. (1987) The chiral bilayer effect stabilizes micellar fibers. J. Am. Chem. Soc. 109, 3387–3390
Fuhrhop, J.-H., Bedurke, T., Hahn, A., Grund, S., Gatzmann, J., Riederer, M. (1994) Der Effekt chiraler Doppelschichten: Wachsröhren aus (S)-Nonacosan-10-ol. Angew. Chem. 106, 351–353
Gerson, A.R., Sherwood, J.N., Roberts, K.J., Hausermann, D. (1990) Novel kinetic and structural studies of wax crystallization. J. Cryst. Gr. 99, 145–149
Grill, D. (1973) Rasterelektronenmikroskopische Untersuchungen an Nadeln einiger Pinaceen, Cupressaceen und Taxaceen. Mikroskopie 29, 348–358
Gülz, P.-G., Hängst, K. (1983) Chemistry and morphology of epicuticular waxes from various organs of Jojoba (Simmondsia chinensis [Link] Schneider). Z. Naturforsch. 83C, 683–688
Günthardt, M.S. (1985) Entwicklung der Spaltöffnungen und der epicuticulären Wachsschicht bei Pinus cembra und Picea abies. Bot. Helv. 95, 5–12
Hall, D.M., Donaldson, L.A. (1962) Secretion from pores of surface wax on plant leaves. Nature 194, 1196
Hallam, N.D. (1970) Growth and regeneration of waxes on the leaves of Eucalyptus. Planta 93, 257–268
Holloway, P.J. (1970) Surface factors affecting the wetting of leaves. Pestic. Sci. 1, 156–163
Holloway, P.J. (1984) Surface lipids of plants and animals. In: CRC Handbook of Chromatography, Lipids, vol. 1, pp. 347–380, Mangold, H.K., Zweig, G., Sherma, J., eds. CRC Press, Boca Raton
Holloway, P.J., Jeffree, C.E., Baker, E.A. (1976) Structural determination of secondary alcohols from plant epicuticular waxes. Phytochemistry 15, 1768–1770
Jacques, J., Collet, A., Wilen, S.H. (1981) Enantiomers, racemates, and resolutions. Wiley, New York
Jeffree, C.E. (1974) Method for recrystallizing selected components of plant epicuticular waxes as surfaces for the growth of microorganisms. Trans. Br. Mycol. Soc. 63, 626–629
Jeffree, C.E. (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Insects and the plant surface, pp. 23–135, Juniper, B., Southwood, R., eds. Arnold, London
Jeffree, C.E., Johnson, R.P.C., Jarvis, P.G. (1971) Epicuticular wax in the stomatal antechamber of Sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta 98, 1–10
Jeffree, C.E., Baker, E.A., Holloway, P.J. (1975) Ultrastructure and recrystallization of plant epicuticular waxes. New Phytol. 75, 539–549
Jetter, R. (1993) Chemische Zusammensetzung, Struktur und Bildung röhrenförmiger Wachskristalle auf Pflanzenoberflächen. PhD Thesis, Universität Kaiserslautern, Germany
Johnson, R.P.C., Jeffree, C.E. (1970) Negative stain in wax tubes from the surface of Sitka spruce leaves. Planta 95, 179–182
Kreger, D.R. (1949) An X-ray study of waxy coatings from plants. Rec. Trav. Bot. Neerl. 41, 603–736
Leyton, L., Juniper, B.E. (1963) Cuticle structure and water relations of pine needles. Nature 198, 770–771
Lister, G.R., Thair, B.W. (1981) In vitro studies on the fine structure of epicuticular leaf wax from Pseudotsuga menziesii. Can. J. Bot. 59, 640–648
Lundén, B.-M. (1976) The crystal structure fo 12-D-hydroxyoctadecanoid acid methyl ester. Acta Cryst. B32, 3149–3153
Lundén, B.-M., Löfgren, H., Pascher, I. (1977) Accomodation of hydroxyl groups and their hydrogen bond system in a hydrocarbon matrix. Chem. Phys. Lipids 20, 263–271
Martin, J.T. (1964) Role of cuticle in the defense against plant disease. Annu. Rev. Phytopathol. 2, 81–100
Neinhuis, C. (1993) Untersuchungen zur Verbreitung, Charakterisierung und Funktion mikroskulptierter Oberflächen bei Pflanzen, unter besonderer Berücksichtigung der Benetzbarkeit und Kontamination. PhD Thesis, Universität Bonn, Germany
Netting, A.G., von Wettstein-Knowles, P. (1974) The physico-chemical basis of leaf wettability in wheat. Planta 114, 289–309
Piper, S.H., Chibnall, A.C., Hopkins, S.J., Pollard, A., Smith, J.A.B., Williams, E.F. (1931) Synthesis and crystal spacings of certain long-chain paraffins, ketones and secondary alcohols. Biochem. J. 25, 2072–2094
Riederer, M. (1989) The cuticles of conifers: structure, composition and transport properties. In: Ecological Studies 77, pp. 157–192, Schulze, E.-D., Lange, O.L., Oren, R., eds. Springer, Berlin Heidelberg New York
Riederer, M., Schreiber, L. (1994) Waxes — The transport barriers of plant cuticles. In: Waxes, Hamilton, R.J., ed. The Oily Press, Ayr, in press
Schönherr, J., Lendzian, K. (1981) A simple and inexpensive method of measuring water permeability of isolated plant cuticular membranes. Z. Pflanzenphysiol. 102, 321–327
Schönherr, J., Riederer, M. (1986) Plant cuticles sorb lipophilic compounds during enzymatic isolation. Plant Cell Environ. 9, 459–466
Schreiber, L., Schönherr, J. (1993) Mobilities of organic compounds in reconstituted cuticular wax of barley leaves: Determination of diffusion coefficients. Pestic. Sci. 38, 353–361
Segerman, E. (1965) The modes of hydrocarbon chain packing. Acta Cryst. 19, 789–796
Sitte, P., Rennier, R. (1963) Untersuchungen an cuticularen Zellwandschichten. Planta 60, 19–40
Small, D.M. (1984) Lateral chain packing in lipids and membranes. J. Lipid Res. 25, 1490–1500
Tachibana, T., Mori, T., Hori, K. (1980) Chiral mesophases of 12-hydroxyoctadecanoic acid in jelly and in the solid state. 1. A new type of lyotropic mesophase in jelly with organic solvents. Bull. Chem. Soc. Jpn. 53, 1714–1719
Thair, B.W., Lister, G.R. (1975) The distribution and fine structure of the epicuticular leaf wax of Pseudotsuga menziezii. Can. J. Bot. 53, 1063–1071
Tulloch, A.P., Bergter, L. (1981) Epicuticular wax of Juniperus scopularum. Phytochemistry 20, 2711–2716
Turunen, M., Huttunen, S. (1990) A review of the response of epicuticular wax of conifer needles to air pollution. J. Environ. Qual. 19, 35–45
Von Wettstein-Knowles, P. (1974) Ultrastructure and origin of epicuticular wax tubes. J. Ultrastruct. Res. 46, 483–498
Von Wettstein-Knowles, P. (1993) Waxes, cutin and suberin. In: Lipid metabolism in plants, pp. 128–166, Moore, T.S., ed. CRC Press, Boca Raton
Walther, W., Vetter, W., Vecchi, M., Schneider, H., Müller, R.K., Netscher, T. (1991) (S)-Trolox methyl ether — a powerful derivatizing reagent for the GC determination of the enantiomers of aliphatic alcohols. Chimia 45, 121–123
Welsh, H.K. (1956) The crystal structure of 14-heptacosanol. Acta Cryst. 9, 89–90
Wiesner, J. (1876) Über die krystallinische Beschaffenheit der geformten Wachsüberzüge pflanzlicher Oberhäute. Bot. Ztg. 34, 225–236
Wollrab, V. (1969a) On natural waxes. 13. Composition of the oxygenous fractions of rose blossom wax. Coll. Czech. 34, 867–874
Wollrab, V. (1969b) Secondary alcohols and paraffins in the plant waxes of the family Rosaceae. Phytochemistry 8, 623–627
Wright, J.D. (1987) Molecular crystals. Cambridge Univ. Press, Cambridge
Author information
Authors and Affiliations
Additional information
The authors are indebted to Prof. W. Barthlott and Dr. C. Neinhuis (Botanisches Institut, Universität Bonn, Germany) for performing major parts of the scanning electron microscopy, to Prof. H.-J. Fuhrhop (Institut für Organische Chemie, Freie Universität Berlin, Germany) for a sample of (S)-nonacosan-10-ol, to Dr. G. Jackson (Exxon Fuels, Abbingdon, UK), Dr. C. Mioskowski and A. Seyer (Chimie Bio-Organique, Université Louis Pasteur, Strasbourg, France) for synthesising racemic nonacosan-10-ol and to Prof. M.H. Zenk (Lehrstuhl für Pharmazeutische Biologie, Universität München, Germany) for supplying plant material. Valuable suggestions and a critical review of the manuscript by Prof. J. Schönherr, (Institut für Obstbau und Baumschule, Universität Hannover, Germany) are gratefully acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft.
Rights and permissions
About this article
Cite this article
Jetter, R., Riederer, M. Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors influencing crystal habits. Planta 195, 257–270 (1994). https://doi.org/10.1007/BF00199686
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00199686