[go: up one dir, main page]

Skip to main content
Log in

Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors influencing crystal habits

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The primary aerial surfaces of plant species from many families (e.g. Pinaceae, Liliaceae, Ranunculaceae, Papaveraceae) are covered by epicuticular tubules 5–20 μm long and 0.5 μn in diameter. The composition, mechanism of growth and molecular structure of this type of epicuticular aggregates have been studied. Pure nonacosan-10-ol extracted from Picea pungens needle surfaces formed, in vitro, tubular crystals like those occurring in vivo. This crystal habit was obtained irrespective of the type of solvent or substratum, if the solvent was evaporated within minutes. This shows that tubules of nonacosan-10-ol are formed in the kinetic regime of crystallization (limited by the diffusion of molecules from the solution to the crystal surface). Slow evaporation of the solvent or crystallization from the melt resulted in rhombic scales. These planar crystals represent the thermodynamic, stable modification of native nonacosan-10-ol. Homologous impurities in natural nonacosan-10-ol (3–14%) had no effect on the formation of the tubules. However, racemic nonacosan-10-ol invariably crystallized in scales. The phase behaviour of mixtures of natural nonacosan-10-ol and its synthetic racemate as well as synthetic (S)-nonacosan-10-ol provided evidence for the presence of the pure (S)-enantiomer on plant surfaces. The findings are discussed in terms of the mechanisms leading to epicuticular tubules consisting of nonacosan-10-ol and their molecular structure. Crystal structures for the pure enantiomer and the racemate of nonacosan-10-ol are proposed. It is concluded that the principles responsible for the formation of tubules are both the special molecular geometry of the naturally occurring (S)-nonacosan-10-ol and the mobility barrier of the plant cuticle. Further specific biological processes are not necessary for the formation of (S)-nonacosan-10-ol tubules. The alterations of epicuticular structures during ageing or the impact of pollutants are explained as spontaneous transitions between two crystal modifications of (S)-nonacosan-10-ol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

O :

orthorhombic subcell

References

  • Abrahamsson, S., Ställberg-Stenhagen, S., Stenhagen, E. (1963) The higher saturated branched chain fatty acids. In: Prog. Chem. Fats Other Lipids, vol. 7, pp 59–88, Holman R.T., Malkin, T., eds. Pergamon Press, Oxford

    Google Scholar 

  • Abrahamsson, S., Dahlen, B., Löfgren, H., Pascher, I. (1978) Lateral packing of hydrocarbon chains. Prog. Chem. Fats Other Lipids 16, 125–143

    Google Scholar 

  • Baker, E.A. (1982) Chemistry and morphology of plant epicuticular waxes. In: The plant cuticle, pp. 139–165, Cutler, D.F., Alvin, K.L., Price, C.E., eds. Academic Press, London

    Google Scholar 

  • Barthlott, W. (1990) Scanning electron microscopy of the epidermal surface in plants. In: The systematics association special volume no. 41, Scanning electron microscopy in taxonomy and functional morphology, pp. 69–94, Claugher, D., ed. Clarendon Press, Oxford

    Google Scholar 

  • Barthlott, W., Frölich, D. (1983) Mikromorphologie und Orientierungsmuster epicuticularer Wachs-Kristalloide: Ein neues systematisches Merkmal bei Monokotylen. Plant Syst. Evol. 142, 171–185

    Google Scholar 

  • Chambers, T.C., Ritchie, I.M., Booth, M.A. (1976) Chemical models for plant wax morphogenesis. New Phytol. 77, 43–49

    Google Scholar 

  • Chibnall, A.C., Piper, S.H., Pollard, A., Smith, J.A.B., Williams, E.F. (1931) The wax constituents of the apple cuticle. Biochem. J. 25, 2095–2110

    Google Scholar 

  • Clark, J.B., Lister, G.R. (1975) Photosynthetic action spectra of trees. 2. The relationship of cuticle structure to the visible and UV spectral properties of needles from four coniferous species. Plant Physiol. 55, 407–413

    Google Scholar 

  • de Bary, A. (1871) Über die Wachsüberzüge der Epidermis. Bot. Ztg. 29, 130–176

    Google Scholar 

  • Fuhrhop, J.-H., Krull, M. (1991) Self-assembling lipid membranes from planar bilayer sheets to cloth-like aggregates of micellar fibers. In: Frontiers in supramolecular organic chemistry and photochemistry, pp. 223–249, Schneider, H.-J., Dürr, H., eds. Verlag Chemie, Weinheim

    Google Scholar 

  • Fuhrhop, J.-H., Schnieder, P., Rosenberg, J., Boekema, E. (1987) The chiral bilayer effect stabilizes micellar fibers. J. Am. Chem. Soc. 109, 3387–3390

    Google Scholar 

  • Fuhrhop, J.-H., Bedurke, T., Hahn, A., Grund, S., Gatzmann, J., Riederer, M. (1994) Der Effekt chiraler Doppelschichten: Wachsröhren aus (S)-Nonacosan-10-ol. Angew. Chem. 106, 351–353

    Google Scholar 

  • Gerson, A.R., Sherwood, J.N., Roberts, K.J., Hausermann, D. (1990) Novel kinetic and structural studies of wax crystallization. J. Cryst. Gr. 99, 145–149

    Google Scholar 

  • Grill, D. (1973) Rasterelektronenmikroskopische Untersuchungen an Nadeln einiger Pinaceen, Cupressaceen und Taxaceen. Mikroskopie 29, 348–358

    Google Scholar 

  • Gülz, P.-G., Hängst, K. (1983) Chemistry and morphology of epicuticular waxes from various organs of Jojoba (Simmondsia chinensis [Link] Schneider). Z. Naturforsch. 83C, 683–688

    Google Scholar 

  • Günthardt, M.S. (1985) Entwicklung der Spaltöffnungen und der epicuticulären Wachsschicht bei Pinus cembra und Picea abies. Bot. Helv. 95, 5–12

    Google Scholar 

  • Hall, D.M., Donaldson, L.A. (1962) Secretion from pores of surface wax on plant leaves. Nature 194, 1196

    Google Scholar 

  • Hallam, N.D. (1970) Growth and regeneration of waxes on the leaves of Eucalyptus. Planta 93, 257–268

    Google Scholar 

  • Holloway, P.J. (1970) Surface factors affecting the wetting of leaves. Pestic. Sci. 1, 156–163

    Google Scholar 

  • Holloway, P.J. (1984) Surface lipids of plants and animals. In: CRC Handbook of Chromatography, Lipids, vol. 1, pp. 347–380, Mangold, H.K., Zweig, G., Sherma, J., eds. CRC Press, Boca Raton

    Google Scholar 

  • Holloway, P.J., Jeffree, C.E., Baker, E.A. (1976) Structural determination of secondary alcohols from plant epicuticular waxes. Phytochemistry 15, 1768–1770

    Google Scholar 

  • Jacques, J., Collet, A., Wilen, S.H. (1981) Enantiomers, racemates, and resolutions. Wiley, New York

    Google Scholar 

  • Jeffree, C.E. (1974) Method for recrystallizing selected components of plant epicuticular waxes as surfaces for the growth of microorganisms. Trans. Br. Mycol. Soc. 63, 626–629

    Google Scholar 

  • Jeffree, C.E. (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Insects and the plant surface, pp. 23–135, Juniper, B., Southwood, R., eds. Arnold, London

    Google Scholar 

  • Jeffree, C.E., Johnson, R.P.C., Jarvis, P.G. (1971) Epicuticular wax in the stomatal antechamber of Sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta 98, 1–10

    Google Scholar 

  • Jeffree, C.E., Baker, E.A., Holloway, P.J. (1975) Ultrastructure and recrystallization of plant epicuticular waxes. New Phytol. 75, 539–549

    Google Scholar 

  • Jetter, R. (1993) Chemische Zusammensetzung, Struktur und Bildung röhrenförmiger Wachskristalle auf Pflanzenoberflächen. PhD Thesis, Universität Kaiserslautern, Germany

    Google Scholar 

  • Johnson, R.P.C., Jeffree, C.E. (1970) Negative stain in wax tubes from the surface of Sitka spruce leaves. Planta 95, 179–182

    Google Scholar 

  • Kreger, D.R. (1949) An X-ray study of waxy coatings from plants. Rec. Trav. Bot. Neerl. 41, 603–736

    Google Scholar 

  • Leyton, L., Juniper, B.E. (1963) Cuticle structure and water relations of pine needles. Nature 198, 770–771

    Google Scholar 

  • Lister, G.R., Thair, B.W. (1981) In vitro studies on the fine structure of epicuticular leaf wax from Pseudotsuga menziesii. Can. J. Bot. 59, 640–648

    Google Scholar 

  • Lundén, B.-M. (1976) The crystal structure fo 12-D-hydroxyoctadecanoid acid methyl ester. Acta Cryst. B32, 3149–3153

    Google Scholar 

  • Lundén, B.-M., Löfgren, H., Pascher, I. (1977) Accomodation of hydroxyl groups and their hydrogen bond system in a hydrocarbon matrix. Chem. Phys. Lipids 20, 263–271

    Google Scholar 

  • Martin, J.T. (1964) Role of cuticle in the defense against plant disease. Annu. Rev. Phytopathol. 2, 81–100

    Google Scholar 

  • Neinhuis, C. (1993) Untersuchungen zur Verbreitung, Charakterisierung und Funktion mikroskulptierter Oberflächen bei Pflanzen, unter besonderer Berücksichtigung der Benetzbarkeit und Kontamination. PhD Thesis, Universität Bonn, Germany

    Google Scholar 

  • Netting, A.G., von Wettstein-Knowles, P. (1974) The physico-chemical basis of leaf wettability in wheat. Planta 114, 289–309

    Google Scholar 

  • Piper, S.H., Chibnall, A.C., Hopkins, S.J., Pollard, A., Smith, J.A.B., Williams, E.F. (1931) Synthesis and crystal spacings of certain long-chain paraffins, ketones and secondary alcohols. Biochem. J. 25, 2072–2094

    Google Scholar 

  • Riederer, M. (1989) The cuticles of conifers: structure, composition and transport properties. In: Ecological Studies 77, pp. 157–192, Schulze, E.-D., Lange, O.L., Oren, R., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Riederer, M., Schreiber, L. (1994) Waxes — The transport barriers of plant cuticles. In: Waxes, Hamilton, R.J., ed. The Oily Press, Ayr, in press

  • Schönherr, J., Lendzian, K. (1981) A simple and inexpensive method of measuring water permeability of isolated plant cuticular membranes. Z. Pflanzenphysiol. 102, 321–327

    Google Scholar 

  • Schönherr, J., Riederer, M. (1986) Plant cuticles sorb lipophilic compounds during enzymatic isolation. Plant Cell Environ. 9, 459–466

    Google Scholar 

  • Schreiber, L., Schönherr, J. (1993) Mobilities of organic compounds in reconstituted cuticular wax of barley leaves: Determination of diffusion coefficients. Pestic. Sci. 38, 353–361

    Google Scholar 

  • Segerman, E. (1965) The modes of hydrocarbon chain packing. Acta Cryst. 19, 789–796

    Google Scholar 

  • Sitte, P., Rennier, R. (1963) Untersuchungen an cuticularen Zellwandschichten. Planta 60, 19–40

    Google Scholar 

  • Small, D.M. (1984) Lateral chain packing in lipids and membranes. J. Lipid Res. 25, 1490–1500

    Google Scholar 

  • Tachibana, T., Mori, T., Hori, K. (1980) Chiral mesophases of 12-hydroxyoctadecanoic acid in jelly and in the solid state. 1. A new type of lyotropic mesophase in jelly with organic solvents. Bull. Chem. Soc. Jpn. 53, 1714–1719

    Google Scholar 

  • Thair, B.W., Lister, G.R. (1975) The distribution and fine structure of the epicuticular leaf wax of Pseudotsuga menziezii. Can. J. Bot. 53, 1063–1071

    Google Scholar 

  • Tulloch, A.P., Bergter, L. (1981) Epicuticular wax of Juniperus scopularum. Phytochemistry 20, 2711–2716

    Google Scholar 

  • Turunen, M., Huttunen, S. (1990) A review of the response of epicuticular wax of conifer needles to air pollution. J. Environ. Qual. 19, 35–45

    Google Scholar 

  • Von Wettstein-Knowles, P. (1974) Ultrastructure and origin of epicuticular wax tubes. J. Ultrastruct. Res. 46, 483–498

    Google Scholar 

  • Von Wettstein-Knowles, P. (1993) Waxes, cutin and suberin. In: Lipid metabolism in plants, pp. 128–166, Moore, T.S., ed. CRC Press, Boca Raton

    Google Scholar 

  • Walther, W., Vetter, W., Vecchi, M., Schneider, H., Müller, R.K., Netscher, T. (1991) (S)-Trolox methyl ether — a powerful derivatizing reagent for the GC determination of the enantiomers of aliphatic alcohols. Chimia 45, 121–123

    Google Scholar 

  • Welsh, H.K. (1956) The crystal structure of 14-heptacosanol. Acta Cryst. 9, 89–90

    Google Scholar 

  • Wiesner, J. (1876) Über die krystallinische Beschaffenheit der geformten Wachsüberzüge pflanzlicher Oberhäute. Bot. Ztg. 34, 225–236

    Google Scholar 

  • Wollrab, V. (1969a) On natural waxes. 13. Composition of the oxygenous fractions of rose blossom wax. Coll. Czech. 34, 867–874

    Google Scholar 

  • Wollrab, V. (1969b) Secondary alcohols and paraffins in the plant waxes of the family Rosaceae. Phytochemistry 8, 623–627

    Google Scholar 

  • Wright, J.D. (1987) Molecular crystals. Cambridge Univ. Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors are indebted to Prof. W. Barthlott and Dr. C. Neinhuis (Botanisches Institut, Universität Bonn, Germany) for performing major parts of the scanning electron microscopy, to Prof. H.-J. Fuhrhop (Institut für Organische Chemie, Freie Universität Berlin, Germany) for a sample of (S)-nonacosan-10-ol, to Dr. G. Jackson (Exxon Fuels, Abbingdon, UK), Dr. C. Mioskowski and A. Seyer (Chimie Bio-Organique, Université Louis Pasteur, Strasbourg, France) for synthesising racemic nonacosan-10-ol and to Prof. M.H. Zenk (Lehrstuhl für Pharmazeutische Biologie, Universität München, Germany) for supplying plant material. Valuable suggestions and a critical review of the manuscript by Prof. J. Schönherr, (Institut für Obstbau und Baumschule, Universität Hannover, Germany) are gratefully acknowledged. This work was supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jetter, R., Riederer, M. Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors influencing crystal habits. Planta 195, 257–270 (1994). https://doi.org/10.1007/BF00199686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199686

Key words

Navigation