[go: up one dir, main page]

Skip to main content

Empowering Vulnerability Prioritization: A Heterogeneous Graph-Driven Framework for Exploitability Prediction

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2023 (WISE 2023)

Abstract

With the increasing number of software vulnerabilities being disclosed each year, prioritizing them becomes essential as it is challenging to patch all of them promptly. Exploitability prediction plays a crucial role in assessing the severity of vulnerabilities and determining their prioritization. Most existing works on exploitability prediction focus on building predictive models based on features extracted from individual vulnerabilities, neglecting the relationships between vulnerabilities and their contextual information. Only a few studies have explored using homogeneous graph-based techniques to enhance performance in this domain. This paper proposes a novel heterogeneous graph-driven framework for enhancing vulnerability exploitability prediction. The framework comprises two heterogeneous graph feature extraction technique streams: topological feature concatenation and node embedding based on heterogeneous graph neural networks (HGNN). Experimental results demonstrate that both streams, leveraging heterogeneous graph-based features, significantly improve the performance of exploitability prediction compared with using features extracted from individual vulnerabilities. Specifically, the two streams achieve 5.44% and 2.06% improvement in the F1 score, respectively. The data and codes are available on GitHub (https://github.com/happyResearcher/HG-VEP) to facilitate reproducibility and further research in this field.

The work reported in this paper was partly supported by the Australian Research Council (ARC) Linkage Project LP180101062.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://nvd.nist.gov/.

  2. 2.

    https://www.exploit-db.com/.

  3. 3.

    https://www.cvedetails.com/.

  4. 4.

    https://cwe.mitre.org/.

  5. 5.

    https://www.exploit-db.com/.

  6. 6.

    https://neo4j.com/docs/graph-data-science/current/algorithms/.

  7. 7.

    https://scikit-learn.org/stable/.

  8. 8.

    https://neo4j.com/.

  9. 9.

    https://pytorch-geometric.readthedocs.io/en/latest/index.html.

References

  1. Bozorgi, M., Saul, L.K., Savage, S., Voelker, G.M.: Beyond heuristics: learning to classify vulnerabilities and predict exploits. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 105–114. ACM (2010)

    Google Scholar 

  2. Chen, Y., Han, S., Chen, G., Yin, J., Wang, K.N., Cao, J.: A deep reinforcement learning-based wireless body area network offloading optimization strategy for healthcare services. Health Inf. Sci. Syst. 11(1), 8 (2023). https://doi.org/10.1007/s13755-023-00212-3

    Article  Google Scholar 

  3. Cheng, K., et al.: Secure \( k \)k-NN query on encrypted cloud data with multiple keys. IEEE Trans. Big Data 7(4), 689–702 (2017)

    Google Scholar 

  4. Dempsey, K., Takamura, E., Eavy, P., Moore, G.: Automation support for security control assessments: software vulnerability management. Technical report, National Institute of Standards and Technology (2020)

    Google Scholar 

  5. Fatima, M., Rehman, O., Rahman, I.M.: Impact of features reduction on machine learning based intrusion detection systems. EAI Endorsed Trans. Scalable Inf. Syst. 9(6), e9 (2022)

    Google Scholar 

  6. Ge, Y.F., Cao, J., Wang, H., Chen, Z., Zhang, Y.: Set-based adaptive distributed differential evolution for anonymity-driven database fragmentation. Data Sci. Eng. 6(4), 380–391 (2021). https://doi.org/10.1007/s41019-021-00170-4

    Article  Google Scholar 

  7. Ge, Y.F., Orlowska, M., Cao, J., Wang, H., Zhang, Y.: MDDE: multitasking distributed differential evolution for privacy-preserving database fragmentation. VLDB J. 31(5), 957–975 (2022). https://doi.org/10.1007/s00778-021-00718-w

    Article  Google Scholar 

  8. Ge, Y.F., Wang, H., Cao, J., Zhang, Y.: An information-driven genetic algorithm for privacy-preserving data publishing. In: Chbeir, R., Huang, H., Silvestri, F., Manolopoulos, Y., Zhang, Y. (eds.) WISE 2022. LNCS, vol. 13724, pp. 340–354. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20891-1_24

    Chapter  Google Scholar 

  9. Hong, W., et al.: Graph intelligence enhanced bi-channel insider threat detection. In: Yuan, X., Bai, G., Alcaraz, C., Majumdar, S. (eds.) NSS 2022. LNCS, vol. 13787, pp. 86–102. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23020-2_5

    Chapter  Google Scholar 

  10. Hong, W., et al.: A graph empowered insider threat detection framework based on daily activities. ISA Trans. (2023, in press). https://doi.org/10.1016/j.isatra.2023.06.030

  11. Kong, L., Wang, L., Gong, W., Yan, C., Duan, Y., Qi, L.: LSH-aware multitype health data prediction with privacy preservation in edge environment. World Wide Web 25, 1793–1808 (2022). https://doi.org/10.1007/s11280-021-00941-z

    Article  Google Scholar 

  12. Patil, D.R., Pattewar, T.M.: Majority voting and feature selection based network intrusion detection system. EAI Endorsed Trans. Scalable Inf. Syst. 9(6), e6 (2022)

    Google Scholar 

  13. Qin, S., Chow, K.P.: Automatic analysis and reasoning based on vulnerability knowledge graph. In: Ning, H. (ed.) CyberDI/CyberLife -2019. CCIS, vol. 1137, pp. 3–19. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1922-2_1

    Chapter  Google Scholar 

  14. Sarki, R., Ahmed, K., Wang, H., Zhang, Y., Wang, K.: Convolutional neural network for multi-class classification of diabetic eye disease. EAI Endorsed Trans. Scalable Inf. Syst. 9(4), e5 (2022)

    Google Scholar 

  15. Shalini, R., Manoharan, R.: Trust model for effective consensus in blockchain. EAI Endorsed Trans. Scalable Inf. Syst. 9(5), 1–8 (2022). https://doi.org/10.4108/eai.1-2-2022.173294

  16. Han, S., Chen, Y., Chen, G., Yin, J., Wang, H., Cao, J.: Multi-step reinforcement learning-based offloading for vehicle edge computing. In: 2023 15th International Conference on Advanced Computational Intelligence (ICACI), pp. 1–8. IEEE (2023)

    Google Scholar 

  17. Singh, R., et al.: Antisocial behavior identification from twitter feeds using traditional machine learning algorithms and deep learning. EAI Endorsed Trans. Scalable Inf. Syst. 10(4), e17 (2023)

    Article  Google Scholar 

  18. Suciu, O., Nelson, C., Lyu, Z., Bao, T., Dumitraş, T.: Expected exploitability: predicting the development of functional vulnerability exploits. In: 31st USENIX Security Symposium (USENIX Security 2022), pp. 377–394 (2022)

    Google Scholar 

  19. Sun, X., Wang, H., Li, J.: Injecting purpose and trust into data anonymisation. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1541–1544 (2009)

    Google Scholar 

  20. Sun, X., Wang, H., Li, J., Zhang, Y.: Satisfying privacy requirements before data anonymization. Comput. J. 55(4), 422–437 (2012)

    Article  Google Scholar 

  21. Sun, Y., Lin, D., Song, H., Yan, M., Cao, L.: A method to construct vulnerability knowledge graph based on heterogeneous data. In: 2020 16th International Conference on Mobility, Sensing and Networking (MSN), pp. 740–745. IEEE (2020)

    Google Scholar 

  22. Venkateswaran, N., Prabaharan, S.P.: An efficient neuro deep learning intrusion detection system for mobile adhoc networks. EAI Endorsed Trans. Scalable Inf. Syst. 9(6), e7 (2022)

    Google Scholar 

  23. Vimalachandran, P., Liu, H., Lin, Y., Ji, K., Wang, H., Zhang, Y.: Improving accessibility of the Australian my health records while preserving privacy and security of the system. Health Inf. Sci. Syst. 8, 1–9 (2020). https://doi.org/10.1007/s13755-020-00126-4

    Article  Google Scholar 

  24. Wang, H., Yi, X., Bertino, E., Sun, L.: Protecting outsourced data in cloud computing through access management. Concurr. Comput. Pract. Exp. 28(3), 600–615 (2014). https://doi.org/10.1002/cpe.3286

    Article  Google Scholar 

  25. Wang, W., Wang, W., Yin, J.: A bilateral filtering based ringing elimination approach for motion-blurred restoration image. Curr. Opt. Photonics 4(3), 200–209 (2020)

    MathSciNet  Google Scholar 

  26. Wang, Y., Zhou, Y., Zou, X., Miao, Q., Wang, W.: The analysis method of security vulnerability based on the knowledge graph. In: 2020 The 10th International Conference on Communication and Network Security, pp. 135–145 (2020)

    Google Scholar 

  27. Yang, Y., Guan, Z., Li, J., Zhao, W., Cui, J., Wang, Q.: Interpretable and efficient heterogeneous graph convolutional network. IEEE Trans. Knowl. Data Eng. 35(2), 1637–1650 (2023)

    Google Scholar 

  28. Yin, J., Tang, M.J., Cao, J., Wang, H., You, M., Lin, Y.: Adaptive online learning for vulnerability exploitation time prediction. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS, vol. 12343, pp. 252–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62008-0_18

    Chapter  Google Scholar 

  29. Yin, J., Tang, M., Cao, J., Wang, H., You, M., Lin, Y.: Vulnerability exploitation time prediction: an integrated framework for dynamic imbalanced learning. World Wide Web 25, 401–423 (2022). https://doi.org/10.1007/s11280-021-00909-z

    Article  Google Scholar 

  30. Yin, J., Tang, M., Cao, J., You, M., Wang, H.: Cybersecurity applications in software: data-driven software vulnerability assessment and management. In: Daimi, K., Alsadoon, A., Peoples, C., El Madhoun, N. (eds.) Emerging Trends in Cybersecurity Applications, pp. 371–389. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09640-2_17

    Chapter  Google Scholar 

  31. Yin, J., Tang, M., Cao, J., You, M., Wang, H., Alazab, M.: Knowledge-driven cybersecurity intelligence: software vulnerability co-exploitation behavior discovery. IEEE Trans. Ind. Inform. 19(4), 5593–5601 (2023)

    Article  Google Scholar 

  32. You, M., Yin, J., Wang, H., Cao, J., Miao, Y.: A minority class boosted framework for adaptive access control decision-making. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds.) WISE 2021. LNCS, vol. 13080, pp. 143–157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90888-1_12

    Chapter  Google Scholar 

  33. You, M., et al.: A knowledge graph empowered online learning framework for access control decision-making. World Wide Web 26(2), 827–848 (2023). https://doi.org/10.1007/s11280-022-01076-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, J., Chen, G., Hong, W., Wang, H., Cao, J., Miao, Y. (2023). Empowering Vulnerability Prioritization: A Heterogeneous Graph-Driven Framework for Exploitability Prediction. In: Zhang, F., Wang, H., Barhamgi, M., Chen, L., Zhou, R. (eds) Web Information Systems Engineering – WISE 2023. WISE 2023. Lecture Notes in Computer Science, vol 14306. Springer, Singapore. https://doi.org/10.1007/978-981-99-7254-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7254-8_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7253-1

  • Online ISBN: 978-981-99-7254-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics