[go: up one dir, main page]

Skip to main content

Node-IBD: A Dynamic Isolation Optimization Algorithm for Infection Prevention and Control Based on Influence Diffusion

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1682))

  • 470 Accesses

Abstract

In the infection prevention and control of epidemics, isolation has always been an important means for mankind to curb the spread of the epidemic. Isolation targets not only confirmed patients, their close contacts and sub-close contacts, and other groups at risk. It is clearly impractical to isolate all the groups with risk. In this paper, we propose an isolation optimization algorithm Node-IBD maximizing influence blocking, aiming to isolate a certain percentage of these close contacts or sub-close contacts to maximize the prevention effect and curb the spread of the epidemic. The possibility of spread of the epidemic can be minimized even when potentially infected persons in the risk population cannot be identified. This paper proves the feasibility and effectiveness of the isolation algorithm through the experiments of static contact network and dynamic contact network. It is expected to provide a useful strategy for future epidemic prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leventhal, G.E., Hill, A.L., Nowak, M.A., et al.: Evolution and emergence of infectious diseases in theoretical and real-world networks. Nat. Commun. 6, 6101 (2015)

    Article  Google Scholar 

  2. Du, Z., Xu, X., Wang, L., et al.: Effects of proactive social distancing on COVID-19 outbreaks in 58 cities, China. Emerg. Infect. Dis. 26(9), 2267 (2020)

    Article  Google Scholar 

  3. Tian, H., Liu, Y., Li, Y., et al.: An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 368(6491), 638–642 (2020)

    Article  Google Scholar 

  4. Han, S., Cai, J., Yang, J., et al.: Time-varying optimization of COVID-19 vaccine prioritization in the context of limited vaccination capacity. Nat. commun. 12(1), 1–10 (2021)

    Article  Google Scholar 

  5. Riley, S.: Large-scale spatial-transmission models of infectious disease. Science 316(5829), 1298–1301 (2007)

    Article  Google Scholar 

  6. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, pp. 700–721 (1927)

    Google Scholar 

  7. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world’’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  8. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, W., Zhao, W.G.W., Wu, D., et al.: Predicting COVID-19 trends in Canada: a tale of four models. Cogn. Comput. Syst. 2(3), 112–118 (2020)

    Article  Google Scholar 

  10. Achterberg, M.A., Prasse, B., Ma, L., et al.: Comparing the accuracy of several network-based COVID-19 prediction algorithms. Int. J. Forecast. (2020)

    Google Scholar 

  11. Ghamizi, S., Rwemalika, R., Cordy, M., et al.: Data-driven simulation and optimization for covid-19 exit strategies. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3434–3442 (2020)

    Google Scholar 

  12. He, X., Song, G., Chen, W., et al.: Influence blocking maximization in social networks under the competitive linear threshold model. In: Proceedings of the 12th SIAM International Conference on Data Mining, pp. 463–474 (2012)

    Google Scholar 

  13. Zhu, W., Yang, W., Xuan, S., et al.: Location-aware targeted influence blocking maximization in social networks. In: 2019 28th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9. IEEE (2019)

    Google Scholar 

  14. Nguyen, N.P., Yan, G., Thai, M.T., et al.: Containment of misinformation spread in online social networks. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 213–222 (2012)

    Google Scholar 

  15. Wu, P., Pan, L.: Scalable influence blocking maximization in social networks under competitive independent cascade models. Comput. Netw. 123, 38–50 (2017)

    Article  Google Scholar 

  16. Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in social networks. In: Proceedings of the 20th international conference on World Wide Web, pp. 665–674 (2011)

    Google Scholar 

  17. Tanınmış, K., Aras, N., Altınel, İK., et al.: Minimizing the misinformation spread in social networks. Iise Trans. 52(8), 850–863 (2020)

    Article  MATH  Google Scholar 

  18. Schrank, D., Eisele, B., Lomax, T.: TTI’s 2012 urban mobility report. Texas A &M Transportation Institute. The Texas A &M University System, vol. 4 (2012)

    Google Scholar 

  19. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  20. Einstein, A.: Investigations on the Theory of the Brownian Movement. Courier Corporation, North Chelmsford (1956)

    Google Scholar 

  21. Shlesinger, M.F., Klafter, J., Wong, Y.M.: Random walks with infinite spatial and temporal moments. J. Stat. Phys. 27(3), 499–512 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zipf, G.K.: The P 1 P 2/D hypothesis: on the intercity movement of persons. Am. Sociol. Rev. 11(6), 677–686 (1946)

    Article  Google Scholar 

  23. Song, C., Koren, T., Wang, P., et al.: Modelling the scaling properties of human mobility. Nat. Phys. 6(10), 818–823 (2010)

    Article  Google Scholar 

  24. Han, X.P., Hao, Q., Wang, B.H., et al.: Origin of the scaling law in human mobility: hierarchy of traffic systems. Phys. Rev. E 83(3), 036117 (2011)

    Article  Google Scholar 

  25. Kang, C., Ma, X., Tong, D., et al.: Intra-urban human mobility patterns: An urban morphology perspective. Phys. A Stat. Mech. Appl. 391(4), 1702–1717 (2012)

    Article  Google Scholar 

  26. Grabowicz, P.A., Ramasco, J.J., Gonçalves, B., et al.: Entangling mobility and interactions in social media. PLoS ONE 9(3), e92196 (2014)

    Article  Google Scholar 

  27. Lu, X., Wetter, E., Bharti, N., et al.: Approaching the limit of predictability in human mobility. Sci. Rep. 3(1), 1–9 (2013)

    Article  Google Scholar 

  28. Xu, F., Li, Y., Jin, D., et al.: Emergence of urban growth patterns from human mobility behavior. Nat. Comput. Sci. 1(12), 791–800 (2021)

    Article  Google Scholar 

  29. Prakash, B.A., Chakrabarti, D., Valler, N.C., et al.: Threshold conditions for arbitrary cascade models on arbitrary networks. Knowl. Inf. Syst. 33(3), 549–575 (2012)

    Article  Google Scholar 

  30. Milanese, A., Sun, J., Nishikawa, T.: Approximating spectral impact of structural perturbations in large networks. Phys. Rev. E 81(4), 046112 (2010)

    Article  Google Scholar 

  31. Tong, H., Prakash, B.A., Eliassi-Rad, T., et al.: Gelling, and melting, large graphs by edge manipulation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 245–254 (2012)

    Google Scholar 

  32. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the NSFC under Grant no. 62276171, the Natural Science Foundation of Guangdong Province of China under Grant Nos. 2019A1515011173 and 2019A1515011064, the Shenzhen Fundamental Research-General Project under Grant No. JCYJ20190808162601658, CCF- Baidu Open Fund, NSF-SZU and Tencent-SZU fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, S. et al. (2023). Node-IBD: A Dynamic Isolation Optimization Algorithm for Infection Prevention and Control Based on Influence Diffusion. In: Sun, Y., et al. Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2022. Communications in Computer and Information Science, vol 1682. Springer, Singapore. https://doi.org/10.1007/978-981-99-2385-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2385-4_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2384-7

  • Online ISBN: 978-981-99-2385-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics