[go: up one dir, main page]

Skip to main content

A Fourier Transform Framework for Domain Adaptation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15038))

Included in the following conference series:

  • 158 Accesses

Abstract

By utilizing unsupervised domain adaptation (UDA), knowledge can be transferred from a label-rich source domain to a target domain that contains relevant information but lacks labels. Many existing UDA algorithms suffer from directly using raw images as input, resulting in models that overly focus on redundant information and exhibit poor generalization capability. To address this issue, we attempt to improve the performance of unsupervised domain adaptation by employing the Fourier method (FTF). Specifically, FTF is inspired by the observation that the amplitude of the Fourier spectrum primarily captures low-level statistical information. In FTF, we effectively incorporate low-level information from the target domain into the source domain by fusing the amplitudes of both domains in the Fourier domain. Additionally, we observe that extracting features from batches of images can eliminate redundant information while retaining class-specific features relevant to the task. Building upon this observation, we apply the Fourier transform at the data stream level for the first time. To further align multiple sources of data, we introduce the concept of correlation alignment. We evaluate the effectiveness of our FTF method, we conducted evaluations on four benchmark datasets for domain adaptation, including Office-31, Office-Home, ImageCLEF-DA, and Office-Caltech. Our results demonstrate superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018). https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  2. Deng, Z., Luo, Y., Zhu, J.: Cluster alignment with a teacher for unsupervised domain adaptation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9943–9952 (2019). https://doi.org/10.1109/ICCV.2019.01004

  3. Frigo, M., Johnson, S.: Fftw: an adaptive software architecture for the fft. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.98CH36181). vol. 3, pp. 1381–1384 (1998). https://doi.org/10.1109/ICASSP.1998.681704

  4. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016). http://jmlr.org/papers/v17/15-239.html

  5. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066–2073 (2012). https://doi.org/10.1109/CVPR.2012.6247911

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016)

    Google Scholar 

  7. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1989–1998. PMLR (10–15 Jul 2018). https://proceedings.mlr.press/v80/hoffman18a.html

  8. Huang, J., Guan, D., Xiao, A., Lu, S.: Rda: robust domain adaptation via fourier adversarial attacking. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8968–8979 (2021). https://api.semanticscholar.org/CorpusID:235359088

  9. ImageCLEF: Imageclef-the clef cross language image retrieval track (2014). https://www.imageclef.org/. Accessed 25 June 2023

  10. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  11. Li, Y., Yang, C., Chen, Y., Zhang, Y.: Unsupervised domain adaptation with structural attribute learning networks. Neurocomputing 415, 96–105 (2020). https://doi.org/10.1016/j.neucom.2020.07.054, https://www.sciencedirect.com/science/article/pii/S0925231220311620

  12. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Neural Information Processing Systems (2017). https://api.semanticscholar.org/CorpusID:46784066

  13. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (Dec 2013)

    Google Scholar 

  14. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 2208–2217. PMLR (06–11 Aug 2017). https://proceedings.mlr.press/v70/long17a.html

  15. Luo, Y.W., Ren, C.X., Dai, D.Q., Yan, H.: Unsupervised domain adaptation via discriminative manifold propagation. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1653–1669 (2022). https://doi.org/10.1109/TPAMI.2020.3014218

    Article  Google Scholar 

  16. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011). https://doi.org/10.1109/TNN.2010.2091281

    Article  Google Scholar 

  17. Portalés, C., Gimeno, J., Salvador, A., García-Fadrique, A., Casas-Yrurzum, S.: Mixed reality annotation of robotic-assisted surgery videos with real- time tracking and stereo matching. Comput. Graph. 110, 125–140 (2023). https://doi.org/10.1016/j.cag.2022.12.006, https://www.sciencedirect.com/science/article/pii/S0097849322002291

  18. Rangwani, H., Aithal, S.K., Mishra, M., Jain, A., Radhakrishnan, V.B.: A closer look at smoothness in domain adversarial training. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 18378–18399. PMLR (17–23 Jul 2022). https://proceedings.mlr.press/v162/rangwani22a.html

  19. Ruan, H., et al.: Gnet: 3d object detection from point cloud with geometry-aware network. In: 2022 IEEE International Conference on Cyborg and Bionic Systems (CBS), pp. 190–195 (2023). https://doi.org/10.1109/CBS55922.2023.10115327

  20. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision - ECCV 2010, pp. 213–226. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Sakouhi, T., Akaichi, J.: Dynamic and multi-source semantic annotation of raw mobility data using geographic and social media data. Pervasive Mob. Comput. 71, 101310 (2021). https://api.semanticscholar.org/CorpusID:232328241

  22. Sun, B., Saenko, K.: Deep coral: correlation alignment for deep domain adaptation. In: ECCV Workshops (2016). https://api.semanticscholar.org/CorpusID:12453047

  23. Tong, J., Chen, T., Wang, Q., Yao, Y.: Few-shot object detection via understanding convolution and attention. In: Yu, S., Zhang, Z., Yuen, P.C., Han, J., Tan, T., Guo, Y., Lai, J., Zhang, J. (eds.) Pattern Recognition and Computer Vision, pp. 674–687. Springer International Publishing, Cham (2022)

    Chapter  Google Scholar 

  24. Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: Proceedings of the 26th ACM International Conference on Multimedia (2018). https://api.semanticscholar.org/CorpusID:49883347

  25. Wang, M., et al.: Boosting unsupervised domain adaptation: a fourier approach. Knowl.-Based Syst. 264, 110325 (2023). https://doi.org/10.1016/j.knosys.2023.110325, https://www.sciencedirect.com/science/article/pii/S0950705123000758

  26. Wu, X., Yuan, X., Cui, Y., Zhao, C.: Rgb-d road segmentation based on geometric prior information. In: Liu, Q., Wang, H., Ma, Z., Zheng, W., Zha, H., Chen, X., Wang, L., Ji, R. (eds.) Pattern Recognition and Computer Vision, pp. 434–445. Springer Nature Singapore, Singapore (2024)

    Chapter  Google Scholar 

  27. Xiao, N., Zhang, L.: Dynamic weighted learning for unsupervised domain adaptation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15237–15246 (2021). https://api.semanticscholar.org/CorpusID:232352345

  28. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695 (2020). https://doi.org/10.1109/CVPR42600.2020.01070

  29. Xu, B., Liu, Q., Huang, T.: A discrete-time projection neural network for sparse signal reconstruction with application to face recognition. IEEE Trans. Neural Netw. Learn. Syst. 30(1), 151–162 (2018)

    Article  MathSciNet  Google Scholar 

  30. Yang, C., Guo, X., Chen, Z., Yuan, Y.: Source free domain adaptation for medical image segmentation with fourier style mining. Med. Image Anal. 79, 102457 (2022). https://doi.org/10.1016/j.media.2022.102457, https://www.sciencedirect.com/science/article/pii/S1361841522001049

  31. Yang, S., Lian, C., Zeng, Z., Xu, B., Zang, J., Zhang, Z.: A multi-view multi-scale neural network for multi-label ecg classification. IEEE Trans. Emerg. Top. Comput. Intell. 7(3), 648–660 (2023). https://doi.org/10.1109/TETCI.2023.3235374

    Article  Google Scholar 

  32. Yang, Y., Soatto, S.: Fda: fourier domain adaptation for semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4084–4094 (2020). https://doi.org/10.1109/CVPR42600.2020.00414

  33. Yao, S., Kang, Q., Zhou, M., Rawa, M.J., Albeshri, A.: Discriminative manifold distribution alignment for domain adaptation. IEEE Trans. Syst. Man Cybern. Syst. 53(2), 1183–1197 (2023). https://doi.org/10.1109/TSMC.2022.3195239

    Article  Google Scholar 

  34. Zhang, Y., Xie, S., Davison, B.D.: Transductive learning via improved geodesic sampling. In: British Machine Vision Conference (2019). https://api.semanticscholar.org/CorpusID:198234065

  35. Zhu, Y., et al.: Multi-representation adaptation network for cross-domain image classification. Neural Netw. Off. J. Int. Neural Netw. Soc. 119, 214–221 (2019). https://api.semanticscholar.org/CorpusID:201700545

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China under Grant 2023YFB3406800, the National Natural Science Foundation of China under Grant 62206204, and the Natural Science Foundation of Chongqing, China (CSTB2023NSCQ-MSX0932).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Luo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1703 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, L., Xu, B., Zhang, Q., Lian, C., Luo, J. (2025). A Fourier Transform Framework for Domain Adaptation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15038. Springer, Singapore. https://doi.org/10.1007/978-981-97-8685-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8685-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8684-8

  • Online ISBN: 978-981-97-8685-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics