[go: up one dir, main page]

Skip to main content

Scale-Adaptive Modulation Meet Compact Axial Transformer for Small Object Detection in UAV-Vision

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15043))

Included in the following conference series:

Abstract

As UAVs become increasingly prevalent in urban security monitoring, they are confronted with the challenge of accurately identifying small targets that are easily obscured by complex backgrounds, dense buildings, and dynamic pedestrian flows. In response to these challenges and the demands of real-world applications, we introduce SMT-Net, a system tailor-made for UAV patrolling. SMT-Net marries the Compact Axial Transformer Block with Scale-Adaptive Modulation, striking an effective balance between detection precision and computational expense. The Compact Axial Transformer Block comprises two innovative components: Compact Axial Attention and Fine-grained Feature Enhancement. Compact Axial Attention reduces parameter count and model intricacy while preserving crucial feature information. Concurrently, the introduced Fine-grained Feature Enhancement substantially boosts the model’s capability to apprehend target details, thereby enhancing classification and detection efficiency for diminutive objects. The Scale-Adaptive modulation adeptly seizes semantic information across disparate feature strata, augmenting the detection acuity for minuscule targets. Furthermore, to improve boundary precision in small object detection, we introduce the shape-IoU method, enhancing detection accuracy. On our designed DRP-Dataset for UAV road patrolling imagery, SMT-Net achieved an outstanding 88.0\(\%\) mAP, particularly demonstrating remarkable superiority in small object detection, and outperforming all mainstream methodologies. The experiments substantiate that SMT-Net can satisfy the stringent demands for accurate and efficient detection across various UAV platforms in diverse complex scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  2. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  3. Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Networks Learn. Syst. 33(12), 6999–7019 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  MATH  Google Scholar 

  5. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  8. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  10. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  11. Dey, P., Chaulya, S., Kumar, S.: Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system. Process Saf. Environ. Prot. 152, 249–263 (2021)

    Article  Google Scholar 

  12. Pu, Y., Wang, Y., Xia, Z., Han, Y., Wang, Y., Gan, W., Wang, Z., Song, S., Huang, G.: Adaptive rotated convolution for rotated object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6589–6600 (2023)

    Google Scholar 

  13. Li, R., Zheng, S., Zhang, C., Duan, C., Wang, L., Atkinson, P.M.: ABCNet: attentive bilateral contextual network for efficient semantic segmentation of fine-resolution remotely sensed imagery. ISPRS J. Photogramm. Remote. Sens. 181, 84–98 (2021)

    Article  MATH  Google Scholar 

  14. Li, J., Tian, P., Song, R., Xu, H., Li, Y., Du, Q.: PCViT: a pyramid convolutional vision transformer detector for object detection in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. (2024)

    Google Scholar 

  15. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  16. Liu, Y., Schiele, B., Vedaldi, A., Rupprecht, C.: Continual detection transformer for incremental object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23799–23808 (2023)

    Google Scholar 

  17. Li, J., Qiao, S., Zhao, Z., Xie, C., Chen, X., Xia, C.: Rethinking lightweight salient object detection via network depth-width tradeoff. IEEE Trans. Image Process. (2023)

    Google Scholar 

  18. Fang, Y., Yang, S., Wang, S., Ge, Y., Shan, Y., Wang, X.: Unleashing vanilla vision transformer with masked image modeling for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6244–6253 (2023)

    Google Scholar 

  19. Song, P., Li, J., An, Z., Fan, H., Fan, L.: CTMFNet: CNN and transformer multiscale fusion network of remote sensing urban scene imagery. IEEE Trans. Geosci. Remote Sens. 61, 1–14 (2022)

    MATH  Google Scholar 

  20. Wang, L., Li, R., Zhang, C., Fang, S., Duan, C., Meng, X., Atkinson, P.M.: UNetFormer: a UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote. Sens. 190, 196–214 (2022)

    Article  Google Scholar 

  21. Varghese, R., Sambath, M.: Yolov8: a novel object detection algorithm with enhanced performance and robustness. In: 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), pp. 1–6. IEEE (2024)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Zhang, J., Yan, J., Zhou, J., Miao, H. (2025). Scale-Adaptive Modulation Meet Compact Axial Transformer for Small Object Detection in UAV-Vision. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15043. Springer, Singapore. https://doi.org/10.1007/978-981-97-8493-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8493-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8492-9

  • Online ISBN: 978-981-97-8493-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics