[go: up one dir, main page]

Skip to main content

Multi-level Contrastive Learning on Weak Social Networks for Information Diffusion Prediction

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14855))

Included in the following conference series:

  • 981 Accesses

Abstract

Information diffusion prediction, as a fundamental task in social network analysis, aims to identify potential users who are likely to participate in an information diffusion process. Most existing works learn user representations based on the collected social network data and then complete downstream prediction tasks. However, due to data privacy protection and low data quality, these methods are always limited by weak information issues of the social network data. For example, incomplete network structure, sparse labels, and insufficient features severely obstruct user representation learning. To mitigate these issues, we design an effective two-stage method MGCL. In the first stage, an enhanced representation is learned for every user even though the social network is with weak information. A multiplex heterogeneous network is adaptively constructed to enrich social network information. To facilitate user representation learning under sparse labels and insufficient features, we further propose self-supervised training specifically tailored for social networks with weak information. In the second stage, the cascade representations are learned using the multi-head self-attention network for information diffusion prediction. Extensive experiments on four real-world datasets validate that MGCL always outperforms state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, J., Yang, Y., Hu, Q., Wang, X., Gao, H.: Public opinion field effect fusion in representation learning for trending topics diffusion. In: NeurIPS (2023)

    Google Scholar 

  2. Sun L., Rao, Y., Wu, L., Zhang, X., Lan, Y., Nazir, A.: Fighting false information from propagation process: a survey. In: ACM Computing Surveys, vol. 55(10), pp. 1–38 (2023)

    Google Scholar 

  3. Chen, J., Hoops, S., Marathe, A., Mortveit, H., Lewis, B., Venkatramanan, S., et al.: Effective social network-based allocation of COVID-19 vaccines. In: KDD, pp. 1675–1683 (2022)

    Google Scholar 

  4. Broekaert, J. B., La Torre, D., Hafiz, F.: Competing control scenarios in probabilistic SIR epidemics on social-contact networks. In: ArXiv./abs/2108.13714 (2021)

    Google Scholar 

  5. Cheng, J., Adamic, L., Dow, P., Kleinberg, J. M., Leskovec, J.: Can cascades be predicted? In: WWW, pp. 925–936 (2014)

    Google Scholar 

  6. Gao, S., Ma, J., Chen, Z.: Effective and effortless features for popularity prediction in microblogging network. In: WWW, pp. 269–270 (2014)

    Google Scholar 

  7. Wang, J., Zheng, V. W., Liu, Z., Chang, K. C.: Topological recurrent neural network for diffusion prediction. In: ICDM, pp. 475–484 (2017)

    Google Scholar 

  8. Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural diffusion model for microscopic cascade study. TKDE 33(3), 1128–1139 (2021)

    Google Scholar 

  9. Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with structure attention. In: CIKM, pp. 1795–1798 (2018)

    Google Scholar 

  10. Sankar, A., Zhang, X., Krishnan, A., Han, J.: Inf-VAE: a variational autoencoder framework to integrate homophily and influence in diffusion prediction. In: WSDM, pp. 510–518 (2020)

    Google Scholar 

  11. Yang, C., Tang, J., Sun, M., Cui, G., Liu, Z.: Multi-scale information diffusion prediction with reinforced recurrent networks. In: IJCAI, pp. 4033–4039 (2019)

    Google Scholar 

  12. Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic heterogeneous graph convolutional network to learn users’ dynamic preferences for information diffusion prediction. In: ECML/PKDD, pp. 347–363 (2020)

    Google Scholar 

  13. Sun, L., Rao, Y., Zhang, X., Lan, Y., Yu, S.: MS-HGAT: memory-enhanced sequential hypergraph attention network for information diffusion prediction. In: AAAI, pp. 4156–4164 (2022)

    Google Scholar 

  14. Liu, Y., Ding, K., Wang J., Lee, V., Liu, H., Pan, S.: Learning strong graph neural networks with weak information. In: KDD, pp. 1559–1571 (2023)

    Google Scholar 

  15. Yu, P., Fu, C., Yu, Y., Huang, C., Zhao, Z., Dong, J.: Multiplex heterogeneous graph convolutional network. In: KDD, pp. 2377–2387 (2022)

    Google Scholar 

  16. Hamilton, W. L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: NeurPIS (2017)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  18. Wang, Z., Zhu, Y., Wang, C., Ma, W., Li, B., Yu, J.: Adaptive graph representation learning for next POI recommendation. In: WWW, pp. 393–402 (2023)

    Google Scholar 

  19. Zhang, H., Yang, Y., Wang, X., Gao, H., Hu, Q.: MLI: A multi-level inference mechanism for user attributes in social networks. In: TOIS, vol. 41(2), 1–30 (2022)

    Google Scholar 

  20. Wang, H., Yang, C., Shi, C.: Neural information diffusion prediction with topic-aware attention network. In: CIKM, pp. 1899–1908 (2021)

    Google Scholar 

  21. Velickovic, P., Fedus, W., Hamilton, W.L., Li‘o, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. In: ICLR (Poster) (2019)

    Google Scholar 

  22. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. In: arXiv preprint arXiv:1808.06670 (2018)

  23. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: NeurIPS, pp. 5812–5823 (2020)

    Google Scholar 

  24. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: WWW, pp. 2069–2080 (2021)

    Google Scholar 

  25. Hassani, K., Khasahmadi, A. H.: Contrastive multi-view representation learning on graphs. In: ICML, pp. 4116–4126 (2022)

    Google Scholar 

  26. An, W., Tian, F., Chen, P., Tang, S., Zheng, Q., Wang, Q.: Fine-grained category discovery under coarse-grained supervision with hierarchical weighted self-contrastive learning. In: EMNLP, pp. 1314–1323 (2022)

    Google Scholar 

  27. Hodas, N.O., Lerman, K.: The simple rules of social contagion. In: Scientific Reports, pp. 1–7 (2014)

    Google Scholar 

  28. Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: ComSoc: adaptive transfer of user behaviors over composite social network. In: KDD, pp. 696–704 (2012)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Laboratory of Communication Content Cognition Funded Project No. A32003, National Natural Science Foundation of China No. U22A2025 and No. 61972275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, Z. et al. (2024). Multi-level Contrastive Learning on Weak Social Networks for Information Diffusion Prediction. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14855. Springer, Singapore. https://doi.org/10.1007/978-981-97-5572-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5572-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5571-4

  • Online ISBN: 978-981-97-5572-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics