Abstract
A Convolutional Neural Network represents a machine learning model commonly employed for pattern recognition and classification tasks in image and video-based applications. The architecture of a Convolutional Neural Network typically comprises a sequence of convolutional layers paired with pooling layers, with the final output being classified by a fully connected layer. The role of the convolutional layer is to enable the mapping of distinctive image features, while the pooling layer serves to reduce the dimensionality of matrices and simplify the data. In this research endeavor, we delve into assessing the performance of a parallelized implementation of a Convolutional Neural Network executed on a Multiprocessor System-on-Chip.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alpaydin, E.: An Introduction to Machine Learning, 3rd edn. MIT Press, Cambridge (2010)
De Franca, A.B., Oliveira, F.D., Gomes, J.G.R., Nedjah, N.: Non-memoryless vs. memoryless hardware architectures for convolutional neural networks. In: 2021 IEEE 12th Latin American Symposium on Circuits and Systems, LASCAS 2021, pp. 21–24 (2021). https://doi.org/10.1109/LASCAS51355.2021.9459115
Duato, J., Yalamanchili, S., Li, L.: Interconnection Networks - An Engineering Approach, 1st edn. Morgan Kaufmann (2003)
Guan, Y., et al.: FP-DNN: an automated framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid templates. In: International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 152–159 (2017). https://doi.org/10.1109/FCCM.2017.25
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1999)
Lecun, Y., Bottou, L., Bengio, Y., Ha, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 1–46 (1998)
Li, W.J., Ruan, S.J., Yang, D.S.: Implementation of energy-efficient fast convolution algorithm for deep convolutional neural networks based on FPGA. Electron. Lett. 56(10), 485–488 (2020)
de Micheli, G., Benini, L.: Network on Chips, 1st edn. Morgan Kaufmann (2006)
Mittal, S.: A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. Appl. 32(4), 1109–1139 (2020). https://doi.org/10.1007/s00521-018-3761-1
Moraes, F., Calazans, N., Mello, A., Möller, L., Ost, L.: HERMES: an infrastructure for low area overhead packet-switching networks on chip. Integration, VLSI J. 38(1), 69–93 (2004). https://doi.org/10.1016/j.vlsi.2004.03.003. https://linkinghub.elsevier.com/retrieve/pii/S0167926004000185
Pasricha, S., Dutt, N.: On-Chip Communication Architectures: System on Chip Interconnect. Morgan Kaufmann (2010)
Patterson, D.A., Hennessy, J.L.: Computer Organization and Design - The Hardware/Software Interface. Morgan Kaufmann (2012)
Rhoads, S.: Plasma - MIPS I compatible processor (2001). https://opencores.org/projects/plasma
Ruaro, M., Caimi, L.L., Fochi, V., Moraes, F.G.: Memphis: a framework for heterogeneous many-core SoCs generation and validation. Des. Autom. Embed. Syst. 23(3–4), 103–122 (2019)
Shawahna, A., Sait, S.M., El-Maleh, A.: FPGA-based accelerators of deep learning networks for learning and classification: a review. IEEE Access 7, 7823–7859 (2019). https://doi.org/10.1109/ACCESS.2018.2890150
Sze, V., Chen, Y.H., Emer, J., Suleiman, A., Zhang, Z.: Hardware for machine learning: challenges and opportunities. In: 2018 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8 (2018). https://doi.org/10.1109/CICC.2018.8357072
Acknowledgment
The authors are grateful to FAPERJ (Fundação de Amparo á Pesquisa do Estado do Rio de janeiro, http://www.faperj.br), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, http://www.cnpq.br) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Níível Superior, http://www.capes.gov.br/) for their continuous financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
de Macedo Mourelle, L., Nedjah, N., Cardoso, A.N. (2024). Parallel Implementation of a Convolutional Neural Network on an MPSoC. In: Fujita, H., Cimler, R., Hernandez-Matamoros, A., Ali, M. (eds) Advances and Trends in Artificial Intelligence. Theory and Applications. IEA/AIE 2024. Lecture Notes in Computer Science(), vol 14748. Springer, Singapore. https://doi.org/10.1007/978-981-97-4677-4_28
Download citation
DOI: https://doi.org/10.1007/978-981-97-4677-4_28
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-4676-7
Online ISBN: 978-981-97-4677-4
eBook Packages: Computer ScienceComputer Science (R0)