[go: up one dir, main page]

Skip to main content

Parallel Implementation of a Convolutional Neural Network on an MPSoC

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Applications (IEA/AIE 2024)

Abstract

A Convolutional Neural Network represents a machine learning model commonly employed for pattern recognition and classification tasks in image and video-based applications. The architecture of a Convolutional Neural Network typically comprises a sequence of convolutional layers paired with pooling layers, with the final output being classified by a fully connected layer. The role of the convolutional layer is to enable the mapping of distinctive image features, while the pooling layer serves to reduce the dimensionality of matrices and simplify the data. In this research endeavor, we delve into assessing the performance of a parallelized implementation of a Convolutional Neural Network executed on a Multiprocessor System-on-Chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alpaydin, E.: An Introduction to Machine Learning, 3rd edn. MIT Press, Cambridge (2010)

    Google Scholar 

  2. De Franca, A.B., Oliveira, F.D., Gomes, J.G.R., Nedjah, N.: Non-memoryless vs. memoryless hardware architectures for convolutional neural networks. In: 2021 IEEE 12th Latin American Symposium on Circuits and Systems, LASCAS 2021, pp. 21–24 (2021). https://doi.org/10.1109/LASCAS51355.2021.9459115

  3. Duato, J., Yalamanchili, S., Li, L.: Interconnection Networks - An Engineering Approach, 1st edn. Morgan Kaufmann (2003)

    Google Scholar 

  4. Guan, Y., et al.: FP-DNN: an automated framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid templates. In: International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 152–159 (2017). https://doi.org/10.1109/FCCM.2017.25

  5. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  6. Lecun, Y., Bottou, L., Bengio, Y., Ha, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 1–46 (1998)

    Article  Google Scholar 

  7. Li, W.J., Ruan, S.J., Yang, D.S.: Implementation of energy-efficient fast convolution algorithm for deep convolutional neural networks based on FPGA. Electron. Lett. 56(10), 485–488 (2020)

    Article  Google Scholar 

  8. de Micheli, G., Benini, L.: Network on Chips, 1st edn. Morgan Kaufmann (2006)

    Google Scholar 

  9. Mittal, S.: A survey of FPGA-based accelerators for convolutional neural networks. Neural Comput. Appl. 32(4), 1109–1139 (2020). https://doi.org/10.1007/s00521-018-3761-1

    Article  Google Scholar 

  10. Moraes, F., Calazans, N., Mello, A., Möller, L., Ost, L.: HERMES: an infrastructure for low area overhead packet-switching networks on chip. Integration, VLSI J. 38(1), 69–93 (2004). https://doi.org/10.1016/j.vlsi.2004.03.003. https://linkinghub.elsevier.com/retrieve/pii/S0167926004000185

  11. Pasricha, S., Dutt, N.: On-Chip Communication Architectures: System on Chip Interconnect. Morgan Kaufmann (2010)

    Google Scholar 

  12. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design - The Hardware/Software Interface. Morgan Kaufmann (2012)

    Google Scholar 

  13. Rhoads, S.: Plasma - MIPS I compatible processor (2001). https://opencores.org/projects/plasma

  14. Ruaro, M., Caimi, L.L., Fochi, V., Moraes, F.G.: Memphis: a framework for heterogeneous many-core SoCs generation and validation. Des. Autom. Embed. Syst. 23(3–4), 103–122 (2019)

    Article  Google Scholar 

  15. Shawahna, A., Sait, S.M., El-Maleh, A.: FPGA-based accelerators of deep learning networks for learning and classification: a review. IEEE Access 7, 7823–7859 (2019). https://doi.org/10.1109/ACCESS.2018.2890150

    Article  Google Scholar 

  16. Sze, V., Chen, Y.H., Emer, J., Suleiman, A., Zhang, Z.: Hardware for machine learning: challenges and opportunities. In: 2018 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8 (2018). https://doi.org/10.1109/CICC.2018.8357072

Download references

Acknowledgment

The authors are grateful to FAPERJ (Fundação de Amparo á Pesquisa do Estado do Rio de janeiro, http://www.faperj.br), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, http://www.cnpq.br) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Níível Superior, http://www.capes.gov.br/) for their continuous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiza de Macedo Mourelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Macedo Mourelle, L., Nedjah, N., Cardoso, A.N. (2024). Parallel Implementation of a Convolutional Neural Network on an MPSoC. In: Fujita, H., Cimler, R., Hernandez-Matamoros, A., Ali, M. (eds) Advances and Trends in Artificial Intelligence. Theory and Applications. IEA/AIE 2024. Lecture Notes in Computer Science(), vol 14748. Springer, Singapore. https://doi.org/10.1007/978-981-97-4677-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-4677-4_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-4676-7

  • Online ISBN: 978-981-97-4677-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics