[go: up one dir, main page]

Skip to main content

Live Product Line Engineering Using Density-Based Clustering of CAD Models

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Applications (IEA/AIE 2024)

Abstract

Manufacturers of special-purpose machines are faced with the challenge of having to efficiently engineer systems tailored to individual customer requirements, yet sharing the same base technology. One popular approach is that of “product line engineering” (PLE), the general idea being to maintain product lines, i.e., families of similar systems with variations in features, and to reuse components and assemblies wherever possible. We propose a live product line approach wherein variant information for components and assemblies is dynamically created and alternatives are proposed to the designer in the Computer Aided Design (CAD) system. To this end, we apply unsupervised learning techniques, in particular density-based clustering, to grouping CAD models of machine components. We demonstrate the feasibility using a data set from a special-purpose machine manufacturer and show that the approach can provide benefits in machine design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://freecad.org.

References

  1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: ordering points to identify the clustering structure. ACM SIGMOD Rec. 28(2), 49–60 (1999)

    Article  Google Scholar 

  2. Bickel, S., Sauer, C., Schleich, B., Wartzack, S.: Comparing CAD part models for geometrical similarity: a concept using machine learning algorithms. Procedia CIRP 96, 133–138 (2021)

    Article  Google Scholar 

  3. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14

    Chapter  Google Scholar 

  4. Cicconi, P., Raffaeli, R., Germani, M.: An approach to support model based definition by PMI annotations. Comput. Aided Des. Appl. 14(4), 526–534 (2017)

    Article  Google Scholar 

  5. Deshmukh, A.S., et al.: Content-based assembly search: a step towards assembly reuse. Comput. Aided Des. 40(2), 244–261 (2008)

    Article  Google Scholar 

  6. Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, vol. 96, no. 34, pp. 226–231 (1996)

    Google Scholar 

  7. Feldmann, S., Legat, C., Vogel-Heuser, B.: Engineering support in the machine manufacturing domain through interdisciplinary product lines: an applicability analysis. IFAC-PapersOnLine 48(3), 211–218 (2015)

    Article  Google Scholar 

  8. Fischer, S., Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Enhancing clone-and-own with systematic reuse for developing software variants. In: 2014 IEEE International Conference on Software Maintenance and Evolution, pp. 391–400. IEEE (2014)

    Google Scholar 

  9. Hahsler, M., Piekenbrock, M., Doran, D.: dbscan: Fast density-based clustering with R. J. Stat. Softw. 91, 1–30 (2019)

    Article  Google Scholar 

  10. Hong, T., Lee, K., Kim, S.: Similarity comparison of mechanical parts to reuse existing designs. Comput. Aided Des. 38(9), 973–984 (2006)

    Article  Google Scholar 

  11. Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., Ramani, K.: Three-dimensional shape searching: state-of-the-art review and future trends. Comput. Aided Des. 37(5), 509–530 (2005)

    Article  Google Scholar 

  12. Leitner, A., Preschern, C., Kreiner, C.: Effective development of automation systems through domain-specific modeling in a small enterprise context. Softw. Syst. Model. 13, 35–54 (2014)

    Article  Google Scholar 

  13. Liu, H., et al.: 3D model similarity evaluation for mechanical design reuse based on spatial correlated shape-word clique. Multimedia Tools Appl. 79, 8181–8195 (2020)

    Article  Google Scholar 

  14. Lupinetti, K., Giannini, F., Monti, M., Pernot, J.P.: Content-based multi-criteria similarity assessment of CAD assembly models. Comput. Ind. 112, 103111 (2019)

    Article  Google Scholar 

  15. Machalica, D., Matyjewski, M.: CAD models clustering with machine learning. Arch. Mech. Eng. 66(2) (2019)

    Google Scholar 

  16. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  17. Sander, J., et al.: Automatic extraction of clusters from hierarchical clustering representations. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 75–87 (2003)

    Google Scholar 

  18. Schubert, E., et al.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42(3), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  19. Wang, J., Wang, H.: A study of 3D model similarity based on surface bipartite graph matching. Eng. Comput. 34(1), 174–188 (2017)

    Article  Google Scholar 

  20. Zehtaban, L., Elazhary, O., Roller, D.: A framework for similarity recognition of CAD models. J. Comput. Des. Eng. 3(3), 274–285 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Busboom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Funk, S., Legat, C., Busboom, A. (2024). Live Product Line Engineering Using Density-Based Clustering of CAD Models. In: Fujita, H., Cimler, R., Hernandez-Matamoros, A., Ali, M. (eds) Advances and Trends in Artificial Intelligence. Theory and Applications. IEA/AIE 2024. Lecture Notes in Computer Science(), vol 14748. Springer, Singapore. https://doi.org/10.1007/978-981-97-4677-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-4677-4_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-4676-7

  • Online ISBN: 978-981-97-4677-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics