[go: up one dir, main page]

Skip to main content

Generic Construction of Forward-Secure Chameleon Hash Function

  • Conference paper
  • First Online:
Mobile Internet Security (MobiSec 2023)

Abstract

Chameleon Hash Function (CH) is a hash function with a public and secret key pair. CH is collision-resistant for users without a secret key, while users with a secret key can find collisions in hash values. Chameleon Hash has been used in various cryptographic schemes, including online/offline signatures by Shamir et al. and blockchain modification by Ateniese et al. However, once the secret key is exposed in CH, its collision resistance is lost, and the security of all existing CH-based methods cannot be guaranteed. In this paper, we propose a generic Forward-Secure CH scheme, capable of converting any given CH into a Forward-Secure CH (FSCH) through the implementation of forward-secure encryption techniques. The security of the proposed protocol is reduced to Forward-Secure collision resistance, meaning that even if the current secret key is compromised, it ensures that collisions involving past hash values cannot be exploited or detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The randomness r is also sometimes known as a “check value” [2].

References

  1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_10

    Chapter  Google Scholar 

  2. Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable blockchain - or - rewriting history in bitcoin and friends. In: 2017 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 111–126 (2017). https://doi.org/10.1109/EuroSP.2017.37

  3. Ateniese, G., de Medeiros, B.: On the key exposure problem in chameleon hashes. In: Blundo, C., Cimato, S. (eds.) Security in Communication Networks, pp. 165–179. Springer, Berlin Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9_12

    Chapter  Google Scholar 

  4. Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.: Chameleon-hashes with ephemeral trapdoors. In: Fehr, S. (ed.) Public-Key Cryptography - PKC 2017, pp. 152–182. Springer, Berlin Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_6

    Chapter  Google Scholar 

  5. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) Advances in Cryptology – EUROCRYPT 2003, pp. 255–271. Springer, Berlin Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

    Chapter  Google Scholar 

  6. Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-grained and controlled rewriting in blockchains: chameleon-hashing gone attribute-based. Cryptology ePrint Archive, Paper 2019/406 (2019). https://doi.org/10.14722/ndss.2019.23066

  7. Gupta, S., Parne, B.L., Chaudhari, N.S.: An efficient handover aka protocol for wireless network using chameleon hash function. In: 2018 4th International Conference on Recent Advances in Information Technology (RAIT), pp. 1–7 (2018). https://doi.org/10.1109/RAIT.2018.8389091

  8. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. Cryptology ePrint Archive, Paper 1998/010 (1998)

    Google Scholar 

  9. Li, C., Shen, Q., Xie, Z., Dong, J., Fang, Y., Wu, Z.: Efficient identity-based chameleon hash for mobile devices. In: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3039–3043 (2022). https://doi.org/10.1109/ICASSP43922.2022.9746617

  10. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) Advances in Cryptology – CRYPTO 2001, pp. 355–367. Springer, Berlin Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_21

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuko Miyaji .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, P., Matsubara, K., Miyaji, A., Tian, Y. (2024). Generic Construction of Forward-Secure Chameleon Hash Function. In: You, I., Choraś, M., Shin, S., Kim, H., Astillo, P.V. (eds) Mobile Internet Security. MobiSec 2023. Communications in Computer and Information Science, vol 2095. Springer, Singapore. https://doi.org/10.1007/978-981-97-4465-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-4465-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-4464-0

  • Online ISBN: 978-981-97-4465-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics