[go: up one dir, main page]

Skip to main content

Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Abstract

Diagnosing epilepsy requires accurate seizure detection and classification, but traditional manual EEG signal analysis is resource-intensive. Meanwhile, automated algorithms often overlook EEG’s geometric and semantic properties critical for interpreting brain activity. This paper introduces NeuroGNN, a dynamic Graph Neural Network (GNN) framework that captures the dynamic interplay between the EEG electrode locations and the semantics of their corresponding brain regions. The specific brain region where an electrode is placed critically shapes the nature of captured EEG signals. Each brain region governs distinct cognitive functions, emotions, and sensory processing, influencing both the semantic and spatial relationships within the EEG data. Understanding and modeling these intricate brain relationships are essential for accurate and meaningful insights into brain activity. This is precisely where the proposed NeuroGNN framework excels by dynamically constructing a graph that encapsulates these evolving spatial, temporal, semantic, and taxonomic correlations to improve precision in seizure detection and classification. Our extensive experiments with real-world data demonstrate that NeuroGNN significantly outperforms existing state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our source code is available at https://github.com/USC-InfoLab/NeuroGNN.

References

  1. Ackerman, S., et al.: Discovering the brain (1992)

    Google Scholar 

  2. Ahmedt-Aristizabal, D., et al.: Neural memory networks for seizure type classification. In: IEEE EMBC (2020)

    Google Scholar 

  3. Asif, U., et al.: Seizurenet: multi-spectral deep feature learning for seizure type classification. In: MLCN & RNO-AI Workshops at MICCAI (2020)

    Google Scholar 

  4. Bhattacharyya, A., et al.: Tunable-q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals. Appl. Sci. 7(4), 385 (2017)

    Article  Google Scholar 

  5. Chen, D., et al.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: AAAI, vol. 34, pp. 3438–3445 (2020)

    Google Scholar 

  6. Falco-Walter, J.: Epilepsy-definition, classification, pathophysiology, and epidemiology. In: Seminars in neurology, vol. 40, pp. 617–623 (2020)

    Google Scholar 

  7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010)

    Google Scholar 

  8. Hajisafi, A., et al.: Learning dynamic graphs from all contextual information for accurate point-of-interest visit forecasting. arXiv preprint arXiv:2306.15927 (2023)

  9. Hendrycks, D., et al.: Using pre-training can improve model robustness and uncertainty. In: ICML, pp. 2712–2721 (2019)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. K. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  14. Li, Y., et al.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. In: ICLR (2018)

    Google Scholar 

  15. Lopez, S., et al.: Automated identification of abnormal adult EEGs. In: Proceedings of IEEE SPMB, pp. 1–5 (2015)

    Google Scholar 

  16. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  17. Ma, Y., et al.: TSD: transformers for seizure detection. bioRxiv, pp. 2023–01 (2023)

    Google Scholar 

  18. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  19. Roy, S., et al.: Deep learning enabled automatic abnormal EEG identification. In: Proceedings of IEEE EMBC, pp. 2756–2759 (2018)

    Google Scholar 

  20. Saab, K., et al.: Weak supervision as an efficient approach for automated seizure detection in electroencephalography. NPJ Digit. Med. 3(1), 59 (2020)

    Article  Google Scholar 

  21. Scrivener, C.L., Reader, A.T.: Variability of EEG electrode positions and their underlying brain regions: visualizing gel artifacts from a simultaneous EEG-FMRI dataset. Brain Behav. 12(2), e2476 (2022)

    Article  Google Scholar 

  22. Shah, V., et al.: The temple university hospital seizure detection corpus. Front. Neuroinform. 12, 83 (2018)

    Article  Google Scholar 

  23. Sharathappriyaa, V., et al.: Auto-encoder based automated epilepsy diagnosis. In: Proceedings of IEEE ICACCI, pp. 976–982 (2018)

    Google Scholar 

  24. Shoeibi, A., et al.: Epileptic seizures detection using deep learning techniques: a review. In: International Journal of Environmental Research and Public Health (2021)

    Google Scholar 

  25. Shuman, D., et al.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

    Article  Google Scholar 

  26. Song, K., et al.: MPNet: masked and permuted pre-training for language understanding. NeurIPS 33, 16857–16867 (2020)

    Google Scholar 

  27. Tang, S., et al.: Self-supervised graph neural networks for improved electroencephalographic seizure analysis. In: Proceedings of ICLR (2022)

    Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  29. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: ECCV, pp. 818–833 (2014)

    Google Scholar 

  30. Zilles, K.: Brodmann: a pioneer of human brain mapping-his impact on concepts of cortical organization. Brain 141(11), 3262–3278 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Research supported by the National Science Foundation (NSF) under CNS-2125530 and the National Institute of Health (NIH) under grant 5R01LM014026.

Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of NSF or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Hajisafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hajisafi, A., Lin, H., Chiang, YY., Shahabi, C. (2024). Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14648. Springer, Singapore. https://doi.org/10.1007/978-981-97-2238-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2238-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2240-2

  • Online ISBN: 978-981-97-2238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics