Abstract
Exponential growth in the use of cloud computing services makes it difficult to forecast loads of virtual machines (VMs). Accurate virtual machine (VM) workload forecasting is the most critical task in appropriately managing cloud resources such as memory and central processing units while minimizing energy usage. To address this problem, an integrated deep learning model is proposed in this research paper. The model employs two popular neural networks: a bidirectional Long Short-Term Memory Network (BiLSTM) with a convolutional neural networks (CNN). The CNN component pulls high-level attributes from all VM workload data, whereas the BiLSTM component forecasts future VM workload. The experimental results reveal that the suggested model outperforms commonly used workload prediction methods in terms of forecasting accuracy of VMs workloads in cloud computing environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hsu, C.H., Slagter, K.D., Chen, S.C., Chung, YCs.: Optimizing energy consumption with task consolidation in clouds. Inf. Sci. (Ny) 258, 452–462 (2014). https://doi.org/10.1016/j.ins.2012.10.041
Zhang, Q., Yang, L.T., Yan, Z., Chen, Z., Li, P.: an efficient deep learning model to predict cloud workload for industry informatics. IEEE Trans. Ind. Informatics 14(7), 3170–3178 (2018). https://doi.org/10.1109/TII.2018.2808910
Yadav, M.P., Pal, N., Yadav, D.K.: Workload prediction over cloud server using time series data. In: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) 2021, pp. 267–272, 2021. https://doi.org/10.1109/Confluence51648.2021.9377032
Dang-Quang, N.M., Yoo, M.: Deep learning-based autoscaling using bidirectional long short-term memory for kubernetes. Appl. Sci. 11(9) (2021). https://doi.org/10.3390/app11093835
Karim, M.E., Maswood, M.M.S., Das, S., Alharbi, A.G.: BHyPreC: a novel bi-lstm based hybrid recurrent neural network model to predict the cpu workload of cloud virtual machine. IEEE Access 9, 131476–131495 (2021). https://doi.org/10.1109/ACCESS.2021.3113714
Shishira, S.R., Kandasamy, A.: A novel feature extraction model for large-scale workload prediction in cloud environment. SN Comput. Sci. 2(5) (2021). https://doi.org/10.1007/s42979-021-00730-5
Ouhame, S., Hadi, Y., Ullah, A.: An efficient forecasting approach for resource utilization in cloud data center using CNN-LSTM model. Neural Comput. Appl. 9 (2021). https://doi.org/10.1007/s00521-021-05770-9
Nashold, L., Krishnan, R.: Using LSTM and SARIMA models to forecast cluster CPU usage. 2020, [Online]. Available: http://arxiv.org/abs/2007.08092
Hasan Shuvo M.N., Shahriar Maswood M.M., Alharbi, A.G.: LSRU: A novel deep learning based hybrid method to predict the workload of virtual machines in cloud data center. In: 2020 IEEE Reg. 10 Symp. TENSYMP (2020), no. June, pp. 1604–1607 (2020). https://doi.org/10.1109/TENSYMP50017.2020.9230799
Xu, M., Song, C., Wu, H., Gill, S.S., Ye, K., Xu, C.: esDNN: deep neural network based multivariate workload prediction in cloud computing environments. ACM Trans. Internet Technol. 1(1), 1–24 (2022). https://doi.org/10.1145/3524114
Yoo, M.: Applied sciences an efficient multivariate autoscaling framework using Bi-LSTM for cloud computing. (2022)
Leka, H.L., Fengli, Z., Kenea, A.T., Tegene, A.T., Atandoh P., Hundera N.W.: A hybrid cnn-lstm model for virtual machine workload forecasting in cloud data center. pp. 474–478 (2022). https://doi.org/10.1109/iccwamtip53232.2021.9674067
Benmakrelouf, S., Kara, N., Tout, H., Rabipour, R., Edstrom, C.: Resource needs prediction in virtualized systems: Generic proactive and self-adaptive solution. J. Netw. Comput. Appl. 148, 102443 (2019). https://doi.org/10.1016/j.jnca.2019.102443
Nikravesh, A.Y., Ajila, S.A., Lung, C.H.: An autonomic prediction suite for cloud resource provisioning. J. Cloud Comput. 6(1) (2017). https://doi.org/10.1186/s13677-017-0073-4
Zhao, J., Mao, X., Chen, L.: Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Signal Process. Control 47, 312–323 (2019). https://doi.org/10.1016/j.bspc.2018.08.035
Song, X., et al.: Pedestrian trajectory prediction based on deep convolutional LSTM network. IEEE Trans. Intell. Transp. Syst. pp. 1–18 (2020). https://doi.org/10.1109/tits.2020.2981118
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Leka, H.L., Fengli, Z., Kenea, A.T., Sharma, D.P., Tegene, A.T. (2023). Workload Prediction of Virtual Machines Using Integrated Deep Learning Approaches Over Cloud Data Centers. In: Bhattacharyya, S., Banerjee, J.S., Köppen, M. (eds) Human-Centric Smart Computing. Smart Innovation, Systems and Technologies, vol 316. Springer, Singapore. https://doi.org/10.1007/978-981-19-5403-0_5
Download citation
DOI: https://doi.org/10.1007/978-981-19-5403-0_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-5402-3
Online ISBN: 978-981-19-5403-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)