[go: up one dir, main page]

Skip to main content

Workload Prediction of Virtual Machines Using Integrated Deep Learning Approaches Over Cloud Data Centers

  • Conference paper
  • First Online:
Human-Centric Smart Computing

Abstract

Exponential growth in the use of cloud computing services makes it difficult to forecast loads of virtual machines (VMs). Accurate virtual machine (VM) workload forecasting is the most critical task in appropriately managing cloud resources such as memory and central processing units while minimizing energy usage. To address this problem, an integrated deep learning model is proposed in this research paper. The model employs two popular neural networks: a bidirectional Long Short-Term Memory Network (BiLSTM) with a convolutional neural networks (CNN). The CNN component pulls high-level attributes from all VM workload data, whereas the BiLSTM component forecasts future VM workload. The experimental results reveal that the suggested model outperforms commonly used workload prediction methods in terms of forecasting accuracy of VMs workloads in cloud computing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hsu, C.H., Slagter, K.D., Chen, S.C., Chung, YCs.: Optimizing energy consumption with task consolidation in clouds. Inf. Sci. (Ny) 258, 452–462 (2014). https://doi.org/10.1016/j.ins.2012.10.041

    Article  Google Scholar 

  2. Zhang, Q., Yang, L.T., Yan, Z., Chen, Z., Li, P.: an efficient deep learning model to predict cloud workload for industry informatics. IEEE Trans. Ind. Informatics 14(7), 3170–3178 (2018). https://doi.org/10.1109/TII.2018.2808910

    Article  Google Scholar 

  3. Yadav, M.P., Pal, N., Yadav, D.K.: Workload prediction over cloud server using time series data. In: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) 2021, pp. 267–272, 2021. https://doi.org/10.1109/Confluence51648.2021.9377032

  4. Dang-Quang, N.M., Yoo, M.: Deep learning-based autoscaling using bidirectional long short-term memory for kubernetes. Appl. Sci. 11(9) (2021). https://doi.org/10.3390/app11093835

  5. Karim, M.E., Maswood, M.M.S., Das, S., Alharbi, A.G.: BHyPreC: a novel bi-lstm based hybrid recurrent neural network model to predict the cpu workload of cloud virtual machine. IEEE Access 9, 131476–131495 (2021). https://doi.org/10.1109/ACCESS.2021.3113714

    Article  Google Scholar 

  6. Shishira, S.R., Kandasamy, A.: A novel feature extraction model for large-scale workload prediction in cloud environment. SN Comput. Sci. 2(5) (2021). https://doi.org/10.1007/s42979-021-00730-5

  7. Ouhame, S., Hadi, Y., Ullah, A.: An efficient forecasting approach for resource utilization in cloud data center using CNN-LSTM model. Neural Comput. Appl. 9 (2021). https://doi.org/10.1007/s00521-021-05770-9

  8. Nashold, L., Krishnan, R.: Using LSTM and SARIMA models to forecast cluster CPU usage. 2020, [Online]. Available: http://arxiv.org/abs/2007.08092

  9. Hasan Shuvo M.N., Shahriar Maswood M.M., Alharbi, A.G.: LSRU: A novel deep learning based hybrid method to predict the workload of virtual machines in cloud data center. In: 2020 IEEE Reg. 10 Symp. TENSYMP (2020), no. June, pp. 1604–1607 (2020). https://doi.org/10.1109/TENSYMP50017.2020.9230799

  10. Xu, M., Song, C., Wu, H., Gill, S.S., Ye, K., Xu, C.: esDNN: deep neural network based multivariate workload prediction in cloud computing environments. ACM Trans. Internet Technol. 1(1), 1–24 (2022). https://doi.org/10.1145/3524114

    Article  Google Scholar 

  11. Yoo, M.: Applied sciences an efficient multivariate autoscaling framework using Bi-LSTM for cloud computing. (2022)

    Google Scholar 

  12. Leka, H.L., Fengli, Z., Kenea, A.T., Tegene, A.T., Atandoh P., Hundera N.W.: A hybrid cnn-lstm model for virtual machine workload forecasting in cloud data center. pp. 474–478 (2022). https://doi.org/10.1109/iccwamtip53232.2021.9674067

  13. Benmakrelouf, S., Kara, N., Tout, H., Rabipour, R., Edstrom, C.: Resource needs prediction in virtualized systems: Generic proactive and self-adaptive solution. J. Netw. Comput. Appl. 148, 102443 (2019). https://doi.org/10.1016/j.jnca.2019.102443

    Article  Google Scholar 

  14. Nikravesh, A.Y., Ajila, S.A., Lung, C.H.: An autonomic prediction suite for cloud resource provisioning. J. Cloud Comput. 6(1) (2017). https://doi.org/10.1186/s13677-017-0073-4

  15. Zhao, J., Mao, X., Chen, L.: Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Signal Process. Control 47, 312–323 (2019). https://doi.org/10.1016/j.bspc.2018.08.035

    Article  Google Scholar 

  16. Song, X., et al.: Pedestrian trajectory prediction based on deep convolutional LSTM network. IEEE Trans. Intell. Transp. Syst. pp. 1–18 (2020). https://doi.org/10.1109/tits.2020.2981118

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habte Lejebo Leka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leka, H.L., Fengli, Z., Kenea, A.T., Sharma, D.P., Tegene, A.T. (2023). Workload Prediction of Virtual Machines Using Integrated Deep Learning Approaches Over Cloud Data Centers. In: Bhattacharyya, S., Banerjee, J.S., Köppen, M. (eds) Human-Centric Smart Computing. Smart Innovation, Systems and Technologies, vol 316. Springer, Singapore. https://doi.org/10.1007/978-981-19-5403-0_5

Download citation

Publish with us

Policies and ethics