[go: up one dir, main page]

Skip to main content

Genetic Enhancement of Nutraceuticals in Linseed: Breeding and Molecular Strategies

  • Reference work entry
  • First Online:
Compendium of Crop Genome Designing for Nutraceuticals

Abstract

Linseed (or flax) is an important industrial oilseed crop mainly grown in temperate climates for its oil and fiber properties. Linseed fiber separated from stalks is a bast fiber which possesses high mechanical properties. The textile “linen” made from this fiber is popularly used in the textile industry. Seeds of linseed contain 33–47% of oil, with excellent drying property, and its oil is mainly used in the manufacturing of paints, varnishes, linoleum, oil cloths, and printing inks. In the recent past, linseed has gained attention and considered as “superfood” because it is one of the richest sources of omega-3 fatty acid or alpha-linolenic acid (ALA), a nutritionally important fatty acid, phytochemical compounds, vitamins, and minerals. Genetic enhancement in linseed through conventional and biotechnological tools was focused mainly on increased productivity, enhancing oil content and quality, increasing seed size, early maturity, lodging resistance, plant height, and resistance to major diseases. Limited efforts were made toward improvement of the nutraceutical properties of the crop concerning the omega-3 fatty acid content, oil quality modification, essential lignan (secoisolariciresinol diglucoside – SDG), and mucilage which have proven value of linseed as a functional food. Attempts were made to assess variation for these components among the linseed accessions and to study the genotype and environment interaction based on quantitative traits and molecular markers. A noteworthy achievement was made in the development of solin flax (edible oil) through mutagenesis with a point mutation in the LuFAD3A and LuFAD3B genes encoding microsomal desaturases and expanding the utility of linseed oil for edible purposes. During the past two decades, efforts of different research groups have led to the enrichment of genomic resources in terms of mapping populations, construction of linkage maps, development of molecular markers, and identification of quantitative trait loci (QTLs) and quantitative trait nucleotides (QTNs) for traits of agronomic importance. Genetic engineering studies in flax were encouraging and modifications with regard to SDG content, fiber quality, tolerance to herbicides, and resistance to Fusarium were successfully demonstrated. Use of nanoparticles of linseed oil in assessing antitumor activity and as a source of omega-3 in various food preparations and hydrogel derived from mucilage for drug delivery in skin care products is receiving special attention as they are found to be safe with guaranteed delivery and maximum benefit. Despite the promise the crop holds and the research advancements made in this crop, there is a long way to go to exploit the full potential of the crop for diverse nutraceutical and pharmaceutical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbadi A, Domergue F, Bauer J, Napier JA, Welti R et al (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16:2734–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almasi K, Esnaashari SS, Khosravani M, Adabi M (2021) Yogurt fortified with omega-3 using nanoemulsion containing flaxseed oil: investigation of physicochemical properties. Food Sci Nutr 9(11):6186–6193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almehmadi A, Lightowler H, Chohan M, Clegg ME (2021) The effect of a split portion of flaxseed on 24-h blood glucose response. Eur J Nutr 60:1363–1373

    Article  CAS  PubMed  Google Scholar 

  • Álvarez MF, Mosquera T, Blair MW (2014) The use of association genetics approaches in plant breeding. In: Janick J (ed) Plant Breeding Reviews, Vol, vol 38, pp 17–68

    Google Scholar 

  • Austria JA, Richard MN, Chahine MN (2008) Bioavailability of alpha linolenic acid in subjects after ingestion of three different forms of flaxseed. J Am Coll Nutr 27:214–221

    Article  PubMed  Google Scholar 

  • Bernacchia R, Preti R, Vinci G (2014) Chemical composition and health benefits of flaxseed. Austin J Nutr Food Sci 2(8):1045

    Google Scholar 

  • Caligiuri SP, Aukema HM, Ravandi A, Guzman R, Dibrov E, Pierce GN (2014) Flaxseed consumption reduces blood pressure in patients with hypertension by altering circulating oxylipins via an α-linolenic acid-induced inhibition of soluble epoxide hydrolase. Hypertension 64:53–59

    Article  CAS  PubMed  Google Scholar 

  • Carter J (1993) Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition. Cereal Foods World 38(10):753–759

    CAS  Google Scholar 

  • Chen Y, Zhou XR, Zhang ZJ, Dribnenki P, Singh S, Green A (2015) Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing. Plant Cell Rep 34:643–653

    Article  CAS  PubMed  Google Scholar 

  • Chung MWY, Lei B, Li-Chan ECY (2005) Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L.). Food Chem 90:271–279

    Article  CAS  Google Scholar 

  • Cloutier S, Niu Z, Datla R, Duguid S (2009) Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor Appl Genet 119:53–63

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, Ragupathy R, Miranda E, Radovanovic N, Reimer E et al (2012) Integrated consensus genetic and physical maps of flax (Linum usitatissimum L.). Theor Appl Genet 125:1783–1795

    Article  PubMed  PubMed Central  Google Scholar 

  • Czemplik M, Kulma A, Bazela K, Szopa J (2012) The biomedical potential of genetically modified flax seeds overexpressing the glucosyltransferase gene. BMC Complement Altern Med 12:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Das J, Naik B (2017) Linseed: a valuable crop plant. Int J Adv Res 5(3):1428–1442

    Article  Google Scholar 

  • Deng X, Long SH, He DF, Li X, Wang YF et al (2011) Isolation and characterization of polymorphic microsatellite markers from flax (Linum usitatissimum L.). Afr J Biotechnol 10(5):734–739

    CAS  Google Scholar 

  • Dhirhi N, Mehta N, Singh S (2018) Estimation of heterosis for seed yield and its attributing traits in linseed (Linum usitatissimum L.). Int J Curr Microbiol Appl Sci 7(11):2332–2341

    Article  CAS  Google Scholar 

  • Diederichsen A, Raney JP, Duguid SD (2006) Variation of mucilage in flax seed and its relationship with other seed characters. Crop Sci 46:365–371

    Article  Google Scholar 

  • Dmitriev AA, Kezimana P, Rozhmina TA, Zhuchenko AA, Povkhova LV et al (2020) Genetic diversity of SAD and FAD genes responsible for the fatty acid composition in flax cultivars and lines. BMC Plant Biol 20:301. https://doi.org/10.1186/s12870-020-02499-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Mukherjee PK, Mitra A, Zaman S, Mandal AB (2021) Efficient in planta genetic transformation through agrobacterium-mediated floral-dip technique in Indian flax. Plant Cell Biotechnol Mol Biol 22(53&54):21–36

    Google Scholar 

  • Dyer D (2014) Flaxseeds and breast cancer. https://www.oncologynutrition.org/erfc/healthy-nutrition-now/foods/flaxseeds-and-breast-cancer

  • Eric-Parfait Kouamé KJ, Fanny A, Bora M, Li X, Sun Y, Liu L (2021) Novel trends and opportunities for microencapsulation of flaxseed oil in foods: a review. J Funct Foods 87:104812

    Article  Google Scholar 

  • Fahs Z, Rosseza Y, Guénin S, Gutierrez L, Thomasseta B, Perrin Y (2019) Cloning and molecular characterization of three lysophosphatidic acid acyltransferases expressed in flax seeds. Plant Sci 280:41–50

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2020). https://www.fao.org/faostat/en/#data/QCL

  • Fu YB (2019) A molecular view of flax gene pool, chapter 2. In: Cullis CA (ed) Genetics and genomics of Linum, plant genetics and genomics: crops and models 23, https://doi.org/10.1007/978-3-030-23964-0_2

  • Fujisawa M, Watanabe M, Choi SK, Teramoto M, Ohyama K et al (2008) Enrichment of carotenoids in flaxseed (Linum usitatissimum L.) by metabolic engineering with introduction of bacterial phytoene synthase gene crtB. J Biosci Bioeng 105:636–641

    Article  CAS  PubMed  Google Scholar 

  • Gaber DA, Badawy WA (2019) Role of flaxseed oil and silymarin in amelioration of lead-induced kidney injury. Kasr Al Ainy Med J 25:29–37

    Article  Google Scholar 

  • Ganorkar PM, Jain RK (2013) Flaxseed – a nutritional punch. Int Food Res J 20:519–525

    CAS  Google Scholar 

  • Gepts P, Papa R (2003) Possible effects of (trans) gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosaf Res 2:89–103

    Article  Google Scholar 

  • Gowda V, Sharma A, Goyal AK, Singh S, Arora (2018) Process optimization and oxidative stability of omega-3 ice cream fortified with flaxseed oil microcapsules. J Food Sci Technol 55(5):1705–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green AG, Chen Y, Singh SP, Dribnenki (2008) Flax. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic oilseed crops. Blackwell Publishing, Chicester, UK, pp 200–226

    Google Scholar 

  • Hall LM, Booker H, Siloto RMP, Jhala AJ, Weselake RJ (2016) Flax (Linum usitatissimum L.). Industrial Oil Crops. AOCS press, pp 157–194

    Book  Google Scholar 

  • Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L et al (2006) Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum L.) seeds. Planta 224:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • He L, Xiao J, Rashid KY, Yao Z, Li P et al (2019) Genome-wide association studies for pasmo resistance in fax (Linum usitatissimum L.). Front. Plant Sci 9:1982

    Google Scholar 

  • Hoque A, Fiedler JD, Rahman M (2020) Genetic diversity analysis of a flax (Linum usitatissimum L.) global collection. BMC Genomics 21:557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • https://www.indexbox.io/blog/which-country-consumes-the-most-linseed-oil-in-the-world/

  • Ibrahim AK, Zhang L, Niyitanga S, Afzal MZ, Xu Y et al (2020) Principles and approaches of association mapping in plant breeding. Trop Plant Biol 13:212–224

    Article  Google Scholar 

  • Jagtap AA, Badhe YS, Hegde MV, Zanwar AA (2020) Development and characterization of stabilized omega-3 fatty acid and micronutrient emulsion formulation for food fortification. J Food Sci Technol 58(3):996–1004

    Article  PubMed  PubMed Central  Google Scholar 

  • Kesiraju K, Tyagi S, Mukherjee S, Rai R, Singh NK et al (2021) An apical meristem-targeted in planta transformation method for the development of transgenics in flax (Linum usitatissimum): optimization and validation. Front Plant Sci 11:562056. https://doi.org/10.3389/fpls.2020.562056. eCollection 2020

    Article  PubMed  PubMed Central  Google Scholar 

  • Korbes AP, Kulcheski FR, Margis R, Margis-Pinheiro M, TurchettoZolet AC (2016) Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Mol Phylogenet Evol 96:55–69

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Kumar V (2021) Assessment of genetic diversity in linseed germplasm using morphological traits. Electron J Plant Breed 12(1):66–73

    CAS  Google Scholar 

  • Kumar S, You FM, Cloutier S (2012) Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genomics 13:684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, You FM, Duguid S, Booker H, Rowland G et al (2015) QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). Theor Appl Genet 128(5):965–984

    Article  CAS  PubMed  Google Scholar 

  • Lorenc-Kukuła K, Amarowicz R, Oszmiański J, Doermann P, Starzycki M et al (2005) Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J Agric Food Chem 53:3685–3692

    Article  PubMed  Google Scholar 

  • Ludvíková M, Griga M (2015) Transgenic flax/linseed (Linum usitatissimum L.) – expectations and reality. Czech J Genet Plant Breed 51(4):123–141

    Article  Google Scholar 

  • Luo Z, Iaffaldano BJ, Zhuang X, Fresnedo-Ramirez J, Cornish K (2017) Analysis of the first Taraxacum kok-saghyz transcriptome reveals potential rubber yield related SNPs. Sci Rep 7(1):9939

    Article  PubMed  PubMed Central  Google Scholar 

  • Marambe P, Shand P, Wanasundara P (2008) An in-vitro investigation of selected biological activities of hydrolysed flaxseed (Linum usitatissimum L.) proteins. J Am Oil Chem Soc 85:1155–1164

    Article  CAS  Google Scholar 

  • McKenzie RR (2011) Genetic and hormonal regulation of stem vascular tissue development in flax (Linum usitatissimum L.). MSc Thesis, University of Alberta, Edmonton, Alberta, pp 1–220

    Google Scholar 

  • Meacham J, Ajmera R, Tan V (2022) Top 9 Health benefits of flax seeds. https://www.healthline.com/nutrition/benefits-of-flaxseeds#TOC_TITLE_HDR_1

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genomewide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi AA, Saeidi G, Arzani A (2010) Genetic analysis of some agronomic traits in flax (Linum usitatissimum L.). Aust J Crop Sci 4:343–352

    CAS  Google Scholar 

  • Murugkar DA, Zanwar A, Shrivastava A (2021) Effect of nano-encapsulation of flaxseed oil on the stability, characterization and incorporation on the quality of eggless cake. Appl Food Res 1(2):100025

    Article  CAS  Google Scholar 

  • Nag S, Mitra J, Karmakar PG (2015) An overview on flax (Linum usitatissimum L.) and its genetic diversity. Int J Agric Environ Biotechnol 8(4):805–817

    Article  Google Scholar 

  • Nowak DA, Snyder DC, Brown AJ, Wahnefried WD (2007) The effect of flaxseed supplementation on hormonal levels associated with polycystic ovarian syndrome: a case study. Curr Top Nutraceutical Res 5:177–181

    PubMed  PubMed Central  Google Scholar 

  • Ntiamoah C, Rowland GG (1997) Inheritance and characterization of two low linolenic acid EMS-induced McGregor flax (Linum usitatissimum). Can J Plant Sci 77:353–358

    Article  Google Scholar 

  • Oh TJ, Gorman M, Cullis CA (2000) RFLP and RAPD mapping in flax (Linum usitatissimum). Theor Appl Genet 101:590–593

    Article  CAS  Google Scholar 

  • Omoni AO, Aluko RE (2006) Mechanism of the inhibition of calmodulin-dependent neuronal nitric oxide synthase by flaxseed protein hydrolysates. J Am Oil Chem Soc 83:335–340

    Article  CAS  Google Scholar 

  • Panse ML, Phalke SD (2016) Fortification of food with Omega-3 fatty acids. In: Hegde MV, Zanwar AA, Adekar SP (eds) Omega-3 fatty acids - keys to nutritional health. Springer International Publishing, Switzerland, pp 89–100

    Google Scholar 

  • Patel A, Desai SS, Mane VK, Enman J, Rova U et al (2022) Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci Technol 120:140–153

    Article  CAS  Google Scholar 

  • Patial R, Paul S, Sharma D, Sood VK, Kumar N (2019) Morphological characterization and genetic diversity of linseed (Linum usitatissimum L.). J Oilseeds Res 36(1):8–16

    Google Scholar 

  • PGRC (Plant Gene Resource of Canada) (2018) Entries for Taxa in the GRIN-CA database. http://pgrc3.agr.gc.ca/cgi-bin/npgs/html/tax_search_new.pl

  • Prabha S, Yadav A, Yadav HK, Kumar S, Kumar R (2017) Importance of molecular markers in linseed (Linum usitatissimum) genome analysis–a review. Crop Res 52(1, 2 & 3):61–66

    Google Scholar 

  • Radovanovic N, Thambugala D, Duguid S, Loewen E, Cloutier S (2014) Functional characterization of flax fatty acid desaturase FAD2 and FAD3 isoforms expressed in yeast reveals a broad diversity in activity. Mol Biotechnol 56:609–620

    Article  CAS  PubMed  Google Scholar 

  • Ragupathy R, Rathinavelu R, Cloutier S (2011) Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genomics 12:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnayake WMN, Galli C (2009) Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism: a background review paper. Ann Nutr Metab 55:8–43

    Article  CAS  PubMed  Google Scholar 

  • Renouard S, Tribalatc MA, Lamblin F, Mongelard G, Fliniaux O et al (2014) RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J Plant Physiol 171:1372–1377

    Article  CAS  PubMed  Google Scholar 

  • Rezaei S, Sasani M, Akhlaghi M, Kohanmoo A (2020) Flaxseed oil in the context of a weight loss programme ameliorates fatty liver grade in patients with non-alcoholic fatty liver disease: a randomised double-blind controlled trial. Br J Nutr 123(9):994–1002

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F et al (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  CAS  PubMed  Google Scholar 

  • Rowland GG (1991) An EMS-induced low-linolenic-acid mutant in McGregor flax (Linum usitatissimum L.). Can J Plant Sci 71:393–396

    Article  CAS  Google Scholar 

  • Rui-López N, Haslam RP, Venegas-Calerón M, Larson TR, Graham IA et al (2009) The synthesis and accumulation of stearidonic acid in transgenic plants: a novel source of heart-healthy omega-3 fatty acids. Plant Biotechnol J 7:04–716

    Google Scholar 

  • Saivarshine S, Kavitha S, Vishnupriya V, Gayathri R (2020) In vitro xanthine oxidase inhibitory potential of flaxseed oil. Plant Cell Biotechnol Mol Biol 21(29–30):92–96

    Google Scholar 

  • Singh KK, Mridula D, Rehal J, Barnwal P (2011) Flaxseed: a potential source of food, feed and fiber. Crit Rev Food Sci Nutr 51:210–222

    Article  CAS  PubMed  Google Scholar 

  • Soto-Cerda BJ, Butler IM, Muñoz G, Rupayan A, Cloutier S (2012) SSR-based population structure, molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed coat content. Mol Breed 30(2):875–888

    Article  Google Scholar 

  • Soto-Cerda BJ, Duguid S, Booker H, Rowland G, Diederichsen A et al (2014) Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. Theor Appl Genet 127:881–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto-Cerda BJ, Cloutier S, Quian R, Gajardo HA, Olivos M et al (2018) Genome-wide association analysis of mucilage and hull content in flax (Linum usitatissimum L.) seeds. Int J Mol Sci 19:2870

    Article  PubMed  PubMed Central  Google Scholar 

  • Speck A, Trouve JP, Enjalbert J, Geffroy V, Joets J et al (2022) Genetic architecture of powdery mildew resistance revealed by a genome-wide association study of a worldwide collection of flax (Linum usitatissimum L.). Front Plant Sci 13:871633

    Article  PubMed  PubMed Central  Google Scholar 

  • Stefani FDS, Campo CD, Paese K, Guterres SS, Costa TMH et al (2019) Nanoencapsulation of linseed oil with chia mucilage as structuring material: characterization, stability and enrichment of orange juice. Food Res Int 120:872–879

    Article  Google Scholar 

  • Stuglin C, Prasad K (2005) Effect of flaxseed consumption on blood pressure, serum lipids, hemopoietic system and liver and kidney enzymes in healthy humans. J Cardiovasc Pharmacol Ther 10(1):23–27

    Article  CAS  PubMed  Google Scholar 

  • Terfa GN, Gurmu GN (2020) Genetic variability, heritability and genetic advance in linseed (Linum usitatissimum L.) genotypes for seed yield and other agronomic traits. Oil Crop Sci 5:156–160

    Article  Google Scholar 

  • Vavilov NI (1935) Theoretical basis for plant breeding, Moscow. Origin and geography of cultivated plants. In: Love D (trans.) The phytogeographical basis for plant breeding, vol 1. Cambridge University Press, Cambridge, UK, pp 316–366

    Google Scholar 

  • Vrinten P, Hu Z, Munchinsky MA, Rowland G, Qiu X (2005) Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol 139:79–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WJ, Qiu C, Ye Y, Guo X et al (2017) Comparison of phytochemical profiles and health benefits in fiber and oil flaxseeds (Linum usitatissimum L.). Food Chem 214:227–233

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhao Q, Wu G, Zhang S, Jiang T (2017) Development of novel SSR markers for flax (Linum usitatissimum L.) using reduced-representation genome sequencing. Front Plant Sci. https://doi.org/10.3389/fpls.2016.02018

  • Xie D, Dai Z, Yang Z, Tang Q, Sun J et al (2018) Genomic variations and association study of agronomic traits in flax. BMC Genomics 19:512

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi L, Gao F, Siqin B, Zhou Y, Li Q et al (2017) Construction of an SNP-based high-density linkage map for flax (Linum usitatissimum L.) using specific length amplified fragment sequencing (SLAF-seq) technology. PLoS One 12(12):e0189785. https://doi.org/10.1371/journal.pone.0189785

    Article  PubMed  PubMed Central  Google Scholar 

  • You FM, Zheng C, Bartaula S, Khan N, Wang J, Cloutier S (2022) Genomic cross prediction for linseed improvement. In: Gosal SS, Wani SH (eds) Accelerated plant breeding. Spinger Nature, Cham, pp 451–480

    Chapter  Google Scholar 

  • Zhang J, Qi Y, Wang L, Wang L, Yan X et al (2020) Genomic comparison and population diversity analysis provide insights into the domestication and improvement of flax. iScience 23:100967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Xie Y, Miao C, Wang L, Zhao W et al (2022) Secoisolariciresinol diglycoside (SDG) lignan content of oil flax: genotypic and environmental variations and association with other traits. Oil Crop Sci 7(1):1–8

    Article  Google Scholar 

  • Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR et al (2016) Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48:481

    Article  CAS  PubMed  Google Scholar 

  • Zuk M, Prescha A, Stryczewska M, Szopa J (2012) Engineering flax plants to increase their antioxidant capacity and improve oil composition and stability. J Agric Food Chem 60:5003–5012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Manimurugan, C., Zanwar, A., Sujatha, M. (2023). Genetic Enhancement of Nutraceuticals in Linseed: Breeding and Molecular Strategies. In: Kole, C. (eds) Compendium of Crop Genome Designing for Nutraceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-19-4169-6_19

Download citation

Publish with us

Policies and ethics