[go: up one dir, main page]

Skip to main content

Heuristic Approach to Improve the Efficiency of Maximum Weight Matching Algorithm Using Clustering

  • Conference paper
  • First Online:
Intelligent Decision Technologies

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 309))

  • 431 Accesses

Abstract

Graph matching is one of the most well-studied problems in combinatorial optimization. The history of the maximum weight matching problem, which is one of the most popular problems in graph matching, is intertwined with the development of modern graph theory. To solve this problem, Edmonds proposed the blossom algorithm. After that, an increasing number of approximation matching algorithms that can be faster in matching than the blossom algorithm has been proposed. However, matched weights should be considered. This study aims to improve the efficiency of solving the maximum weight matching algorithm by using clustering. Improving efficiency means achieving optimal matching while improving the running time. In this experiment, we attempt to use various real-world datasets to ensure the accuracy of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. 20(1–4), 224–230 (1941)

    Article  MathSciNet  Google Scholar 

  2. Thorndike, R.L.: The problem of classification of personnel. Psychometrika 15(3), 215–235 (1950)

    Article  Google Scholar 

  3. Chan, P., Huang, X., Liu, Z., Zhang, C., Zhang, S.: Assignment and pricing in roommate market. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 30 (2016)

    Google Scholar 

  4. Irving, R.W.: An efficient algorithm for the ‘stable roommates’ problem. J. Algor. 6(4), 577–595 (1985)

    Article  MathSciNet  Google Scholar 

  5. Zhao, B., Xu, P., Shi, Y., Tong, Y., Zhou, Z., Zeng, Y.: Preference-aware task assignment in on-demand taxi dispatching: an online stable matching approach. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2245–2252 (2019)

    Google Scholar 

  6. Kujansuu, E., Lindberg, T., M’akinen, E.: The stable roommates problem and chess tournament pairings. Divulgaciones Matemáticas 7(1), 19–28 (1999)

    Google Scholar 

  7. Roth, A.E., Sönmez, T., Ünver, M.U.: Pairwise kidney exchange. J. Econ. Theory 125(2), 151–188 (2005)

    Google Scholar 

  8. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  Google Scholar 

  9. Preis, R.: Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs. STACS 99, 259–269 (1999)

    Article  MathSciNet  Google Scholar 

  10. Drake, D.E., Hougardy, S.: A simple approximation algorithm for the weighted matching problem. Inform. Process. Lett. 85(4), 211–213 (2003)

    Article  MathSciNet  Google Scholar 

  11. Drake, D.E., Hougardy, S.: Improved linear time approximation algorithms for weighted matchings. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 14–23 (2003)

    Google Scholar 

  12. Duan, R., Pettie, S.: Approximating maximum weight matching in near-linear time. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 673–682 (2010)

    Google Scholar 

  13. Koana, T., Korenwein, V., Nichterlein, A., Zschoche, P.: Data reduction for maximum matching on real-world graphs: theory and experiments (2018). arXiv preprint

    Google Scholar 

  14. Wøhlk, S., Laporte, G.: Computational comparison of several greedy algorithms for the minimum cost perfect matching problem on large graphs. Comput. Oper. Res. 87, 107–113 (2017)

    Article  MathSciNet  Google Scholar 

  15. von Luxburg, U.: A tutorial on spectral clustering. Statist. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  16. Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 22, no. 8, pp. 888–905 (2000)

    Google Scholar 

  17. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)

    Article  Google Scholar 

  18. Sarkar, S., Soundararajan, P.: Supervised learning of large perceptual organization: graph spectral partitioning and learning automata. IEEE Trans. Pattern Anal. Mach. Intell. 22(5), 504–525 (2000)

    Article  Google Scholar 

  19. Hagen, L., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Computer Aided Design Integr. Circ. Syst. 11(9), 1074–1085 (1992)

    Article  Google Scholar 

  20. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Statist. Mech. Theory Experim. 2008, 10 (2008)

    MATH  Google Scholar 

  21. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 6 (2004)

    Article  Google Scholar 

  22. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 2 (2004)

    Google Scholar 

  23. Leskovec, J., Mcauley, J.: Learning to discover social circles in ego networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems. vol. 25. Curran Associates, Inc. (2012). https://proceedings.neurips.cc/paper/2012/file/7a614fd06c325499f1680b9896beedeb-Paper.pdf

  24. Rozemberczki, B., Davies, R., R.S., Sutton, C.: Gemsec: Graph embedding with self clustering. In: Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 65–72 (2019)

    Google Scholar 

  25. Rozemberczki, B.C.A., Sarkar, R.: Multi-scale attributed node embedding (2019). arXiv preprint

    Google Scholar 

  26. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather, from statistical descriptors to parametric models. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1325–1334 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Saga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, L., Saga, R. (2022). Heuristic Approach to Improve the Efficiency of Maximum Weight Matching Algorithm Using Clustering. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol 309. Springer, Singapore. https://doi.org/10.1007/978-981-19-3444-5_3

Download citation

Publish with us

Policies and ethics