[go: up one dir, main page]

Skip to main content

Segmentation of White Blood Cells in Acute Myeloid Leukemia Microscopic Images: A Review

  • Chapter
  • First Online:
Prognostic Models in Healthcare: AI and Statistical Approaches

Part of the book series: Studies in Big Data ((SBD,volume 109))

Abstract

Acute Myeloid Leukemia (AML) is a fast-growing leukemia caused by the rapid proliferation of immature myeloid cells. AML is a life-threatening disease if left untreated. Therefore, early detection of AML is crucial, maximizes the cure opportunities, and saves patients’ lives. Initial AML diagnosis is done by expert pathologists where blood smear images are utilized to detect abnormalities in WBCs. However, manual detection of AML is subjective and prone to errors. On the contrary, computer-aided diagnosis (CAD) systems can be an accurate diagnostic tool for AML and assist pathologists during the diagnosis process. Segmentation of White Blood Cells is the first step toward developing an accurate CAD system for AML. To date, WBC segmentation has several challenges due to several reasons such as different staining conditions, complex nature of microscopic blood images, and morphological diversity of WBCs. Current WBC segmentation techniques vary from conventional image processing methods to advanced machine learning and deep learning methods. This chapter discusses current segmentation methods as well as the potential solutions for improving automated WBC segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, N., Mohamad, D., Abdullah, A.H., Saba, T., Al-Rodhaan, M., Al-Dhelaan, A.: Nuclei segmentation of leukocytes in blood smear digital images. Pak. J. Pharm. Sci. 28(5), 1801–1806 (2015)

    Google Scholar 

  2. Rehman, A., Abbas, N., Saba, T., Rahman, S.I.U., Mehmood, Z., Kolivand, H.: Classification of acute lymphoblastic leukemia using deep learning. Microsc. Res. Tech. 81(11), 1310–1317 (2018)

    Article  Google Scholar 

  3. Bigorra, L., et al.: Feature analysis and automatic identification of leukemic lineage blast cells and reactive lymphoid cells from peripheral blood cell images. J. Clin. Lab. Anal. 31(2), e22024 (2017)

    Article  Google Scholar 

  4. Walker, H.K., Hall, W.D., Hurst, J.W.: Clinical Methods: The History, Physical, and Laboratory Examinations. Boston (1990)

    Google Scholar 

  5. Choi, J.W., et al.: White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks. PLoS ONE 12(12), e0189259–e0189259 (2017)

    Article  Google Scholar 

  6. Rehman, A., Abbas, N., Saba, T., Mahmood, T., Kolivand, H.: Rouleaux red blood cells splitting in microscopic thin blood smear images via local maxima, circles drawing, and mapping with original RBCs. Microsc. Res. Tech. 81(7), 737–744 (2018)

    Google Scholar 

  7. Iqbal, S., Khan, M.U.G., Saba, T., Mehmood, Z., Javaid, N., Rehman, A., Abbasi, R.: Deep learning model integrating features and novel classifiers fusion for brain tumor segmentation. Microsc. Res. Tech. 82(8), 1302–1315 (2019). https://doi.org/10.1002/jemt.23281

    Article  Google Scholar 

  8. Nawaz, M., Mehmood, Z., Nazir, T., Naqvi, R.A., Rehman, A., Iqbal, M., Saba, T.: Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering. Microsc. Res. Tech. 85(1), 339–351 (2022)

    Article  Google Scholar 

  9. Lung, J.W.J., Salam, M.S.H., Rehman, A., Rahim, M.S.M., Saba, T.: Fuzzy phoneme classification using multi-speaker vocal tract length normalization. IETE Tech. Rev. 31(2), 128–136 (2014). https://doi.org/10.1080/02564602.2014.892669

  10. Vardiman, J.W.: The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms. Chem. Biol. Interact. 184(1–2), 16–20 (2010)

    Google Scholar 

  11. Vardiman, J.W.: The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms. Chem. Biol. Interact. 184(1), 16–20 (2010)

    Article  Google Scholar 

  12. Arber, D.A., et al.: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20), 2391–2405 (2016)

    Article  Google Scholar 

  13. Ladines-Castro, W., et al.: Morphology of leukaemias. Rev. Méd. Hosp. Gen. Méx. 79(2), 107–113 (2016)

    Google Scholar 

  14. Bennett, J. .M., Marie‐Theregse Daniel, D.C., Flandrin, G., Galton, D.A.G., Gralnick, H.R., Sultan, C.: Proposals for the classification of the acute Leukaemias French‐American‐British (FAB) co‐operative group. Br. J. Hematol. 33(4) (1976)

    Google Scholar 

  15. Theml, H.D., Haferlach. T.: Color Atlas of Hematology. Thieme (2004)

    Google Scholar 

  16. Makkapati, V.V., Pathangay, V.: Adaptive color illumination for microscopes. In: 2011 National Conference on Communications (NCC) (2011)

    Google Scholar 

  17. Sadeghian, F., et al.: A framework for white blood cell segmentation in microscopic blood images using digital image processing. Biol. Proced. Online 11(1), 196 (2009)

    Article  MathSciNet  Google Scholar 

  18. Miao, H., Xiao, C.: Simultaneous segmentation of leukocyte and erythrocyte in microscopic images using a marker-controlled Watershed algorithm. Comput. Math. Methods Med. 2018, 7235795 (2018)

    Article  Google Scholar 

  19. Elhassan, T.A., et al.: Feature extraction of white blood cells using CMYK-moment localization and deep learning in acute myeloid leukemia blood smear microscopic images. IEEE Aceess (2022)

    Google Scholar 

  20. Matek, C., et al.: A single-cell morphological dataset of Leukocytes from AML patients and non-malignant controls. In: 2019: The Cancer Imaging Archive

    Google Scholar 

  21. Kumar, P.R., et al.: Segmentation of white blood cells using image segmentation algorithms. In: 2020 5th International Conference on Computing, Communication and Security (ICCCS) (2020)

    Google Scholar 

  22. Jadooki, S., Mohamad, D., Saba, T., Almazyad, A.S., Rehman, A.: Fused features mining for depth-based hand gesture recognition to classify blind human communication. Neural Comput. Appl. 28(11), 3285–3294 (2017)

    Article  Google Scholar 

  23. Fatonah, N.S., Tjandrasa, H., Fatichah, C.: Identification of acute lymphoblastic leukemia subtypes in touching cells based on enhanced edge detection. Int. J. Intell. Eng. Syst. 13(4), 204–215 (2020)

    Google Scholar 

  24. Sadeghian, F., et al., A framework for white blood cell segmentation in microscopic blood images using digital image processing. Biol. Proced. Online 11(1), 196–206 (2009)

    Google Scholar 

  25. Liao, Q., Deng, Y.: An accurate segmentation method for white blood cell images. In: Proceedings IEEE International Symposium on Biomedical Imaging. IEEE (2002)

    Google Scholar 

  26. Joshi, M.D., et al.: White blood cells segmentation and classification to detect acute leukemia. Int. J. Emerg. Trends Technol. Comput. Sci. (IJETTCS) 2(3), 147–151 (2013)

    Google Scholar 

  27. Zhang, C., et al.: White blood cell segmentation by color-space-based k-means clustering. Sensors (Basel, Switz.) 14(9), 16128–16147 (2014)

    Article  Google Scholar 

  28. Ibraheem, N., et al.: Understanding color models: a review. ARPN J. Sci. Technol. 2 (2012)

    Google Scholar 

  29. Safuan, S.N.M., et al., White blood cell counting analysis of blood smear images using various segmentation strategies. AIP Conf. Proc. 1883(1), 020018 (2017)

    Google Scholar 

  30. Duan, J., Yu, L.: A WBC segmentation method based on HSI color space. In: 2011 4th IEEE International Conference on Broadband Network and Multimedia Technology. IEEE (2011)

    Google Scholar 

  31. Li, Y., et al.: Segmentation of white blood cell from acute lymphoblastic Leukemia images using dual-threshold method. Comput. Math. Methods Med. 2016, 9514707 (2016)

    Google Scholar 

  32. Sundara, S.M., Aarthi, R.: Segmentation and evaluation of white blood cells using segmentation algorithms. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). IEEE (2019)

    Google Scholar 

  33. Mohapatra, S., et al.: Unsupervised blood microscopic image segmentation and leukemia detection using color based clustering. Int. J. Comput. Inf. Syst. Ind. Manag. Appl.4, 477–485 (2012)

    Google Scholar 

  34. Angkoso, C.V., Purnama, I.K.E., Purnomo, M.H.: Automatic white blood cell segmentation based on color segmentation and active contour model. In: 2018 International Conference on Intelligent Autonomous Systems (ICoIAS). IEEE (2018)

    Google Scholar 

  35. Tavakoli, S., et al.: New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Sci. Rep. 11(1), 19428 (2021)

    Article  Google Scholar 

  36. Cao, H., Liu, H., Song, E.: A novel algorithm for segmentation of leukocytes in peripheral blood. Biomed. Signal Process. Control 45, 10–21 (2018)

    Article  Google Scholar 

  37. Sarrafzadeh, O., Dehnavi, A.M.: Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing. Adv. Biomed. Res. 4, 174 (2015)

    Google Scholar 

  38. Carabias, D.M.: Analysis of Image Thresholding Methods for Their Application to Augmented Reality Environments (2012)

    Google Scholar 

  39. Mohammed, Z.F., Abdulla, A.A.: Thresholding-based white blood cells segmentation from microscopic blood images. UHD J. Sci. Technol. 4(1), 9–17 (2020)

    Google Scholar 

  40. Salem, N., et al.: A comparative study of white blood cells segmentation using Otsu threshold and watershed transformation. J. Biomed. Eng. Med. Imag. 3(3), 15 (2016)

    Google Scholar 

  41. Dorini, L.B., Minetto, R., Leite, N.J.: White blood cell segmentation using morphological operators and scale-space analysis. In: XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007). IEEE (2007)

    Google Scholar 

  42. Mohammed, E.A., et al.: Chronic lymphocytic leukemia cell segmentation from microscopic blood images using watershed algorithm and optimal thresholding. In: 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE (2013)

    Google Scholar 

  43. Zhang, C., et al.: White blood cell segmentation by color-space-based k-means clustering. Sensors 14(9), 16128–16147 (2014)

    Google Scholar 

  44. Jiang, K., Liao, Q.-M., Xiong, Y.J.S.C.: A novel white blood cell segmentation scheme based on feature space clustering. Soft Comput. 10(1), 12–19 (2006)

    Google Scholar 

  45. Ko, B.C., Gim, J.-W., Nam, J.-Y.J.M.: Automatic white blood cell segmentation using stepwise merging rules and gradient vector flow snake. Micron 42(7), 695–705 (2011)

    Google Scholar 

  46. Salem, N.M.: Segmentation of white blood cells from microscopic images using K-means clustering. In: 2014 31st National Radio Science Conference (NRSC). IEEE (2014)

    Google Scholar 

  47. Liu, Z., et al.: Segmentation of white blood cells through nucleus mark watershed operations and mean shift clustering. Sensors 15(9), 22561–22586 (2015)

    Google Scholar 

  48. Zheng, X., et al.: Fast and robust segmentation of white blood cell images by self-supervised learning. Micron 107, 55–71 (2018)

    Google Scholar 

  49. Tulsani, H., Saxena, S., Yadav, N.J.I.: Segmentation using morphological watershed transformation for counting blood cells. IJCAIT 2(3), 28–36 (2013)

    Google Scholar 

  50. Fatichah, C., et al.: Overlapping white blood cell segmentation and counting on microscopic blood cell images. Int. J. Smart Sens. Intell. Syst. 7(3) (2014)

    Google Scholar 

  51. Cao, F., et al.: A novel segmentation algorithm for nucleus in white blood cells based on low-rank representation. Neural Comput. Appl. 28(1), 503–511 (2017)

    Google Scholar 

  52. Sarrafzadeh, O., Dehnavi, A.M.: Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing. Adv. Biomed. Res. 4 (2015)

    Google Scholar 

  53. Jiang, K., Liao, Q.-M., Dai, S.-Y.: A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. In: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693). IEEE (2003)

    Google Scholar 

  54. Ghane, N., et al.: Segmentation of white blood cells from microscopic images using a novel combination of K-means clustering and modified watershed algorithm. J. Med. Sig. Sens. 7(2), 92 (2017)

    Google Scholar 

  55. Miao, H., Xiao, C.: Simultaneous segmentation of leukocyte and erythrocyte in microscopic images using a marker-controlled watershed algorithm. Comput. Math. Methods Med. (2018)

    Google Scholar 

  56. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Google Scholar 

  57. Jiang, X., Zhang, R., Nie, S.: Image segmentation based on PDEs model: a survey. In: 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (2009)

    Google Scholar 

  58. Khamael, A.-D., et al.: Evaluation and benchmarking of level set-based three forces via geometric active contours for segmentation of white blood cell nuclei shape. Comput. Biol. Med. 116, 103568 (2020)

    Google Scholar 

  59. Al-Dulaimi, K., et al.: White blood cell nuclei segmentation using level set methods and geometric active contours. In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE (2016)

    Google Scholar 

  60. Chinnathambi, K., et al.: Robust segmentation of cancer affected white blood cells using modified level set algorithm. Int. J. Simul. Syst. Sci. Technol. 14(9) (2014)

    Google Scholar 

  61. Marzuki, N.I.C., Mahmood, N.H., Razak, M.A.A.: Segmentation of white blood cell nucleus using active contour. J. Teknol. 74(6) (2015)

    Google Scholar 

  62. Mukherjee, D.P., Ray, N., Acton, S.T.: Level set analysis for leukocyte detection and tracking. IEEE Trans. Image Process. 13(4), 562–572 (2004)

    Google Scholar 

  63. Eom, S., et al.: Leukocyte segmentation in blood smear images using region-based active contours. In: International Conference on Advanced Concepts for Intelligent Vision Systems. Springer (2006)

    Google Scholar 

  64. Wenhua, Q., et al.: White Blood Cell Nucleus Segmentation Based on Canny Level Set. 180(10), 85 (2014)

    Google Scholar 

  65. Zamani, F., Safabakhsh. R.: An unsupervised GVF snake approach for white blood cell segmentation based on nucleus. In: 2006 8th International Conference on Signal Processing. IEEE (2006)

    Google Scholar 

  66. Rad, A.E., et al.: Morphological region-based initial contour algorithm for level set methods in image segmentation. Multimed. Tools Appl. 76(2), 2185–2201 (2017)

    Article  MathSciNet  Google Scholar 

  67. Rawat, J., et al.: Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers. Multimed. Tools Appl. 76(18), 19057–19085 (2017)

    Article  Google Scholar 

  68. Sternberg, S.R.: Method and Apparatus for Pattern Recognition and Detection (1983)

    Google Scholar 

  69. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  70. Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 591–606 (2009)

    Article  Google Scholar 

  71. Hegde, R.B., et al.: Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: a study. Aust. Phys. Eng. Sci. Med. 42(2), 627–638 (2019)

    Article  Google Scholar 

  72. Barman, R., et al.: Transfer Learning for Small Dataset (2019)

    Google Scholar 

  73. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8(1), 53 (2021)

    Article  Google Scholar 

  74. Lu, Y., et al.: WBC-net: a white blood cell segmentation network based on UNet++ and ResNet. Appl. Soft Comput. 101, 107006 (2021)

    Article  Google Scholar 

  75. Banik, P.P., Saha, R., Kim, K.-D.: An automatic nucleus segmentation and CNN model based classification method of white blood cell. Expert Syst. Appl. 149, 113211 (2020)

    Article  Google Scholar 

  76. Roy, R.M., Ameer, P.M.: Segmentation of leukocyte by semantic segmentation model: a deep learning approach. Biomed. Sig. Process. Control 65, 102385 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Shafry Mohd Rahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elhassan, T.A., Rahim, M.S.M., Swee, T.T., Hashim, S.Z.M., Aljurf, M. (2022). Segmentation of White Blood Cells in Acute Myeloid Leukemia Microscopic Images: A Review. In: Saba, T., Rehman, A., Roy, S. (eds) Prognostic Models in Healthcare: AI and Statistical Approaches. Studies in Big Data, vol 109. Springer, Singapore. https://doi.org/10.1007/978-981-19-2057-8_1

Download citation

Publish with us

Policies and ethics