[go: up one dir, main page]

Skip to main content

Design Optimization of Plate-Fin Heat Exchanger Using Sine Cosine Algorithm

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1265))

Included in the following conference series:

Abstract

Plate-fin heat exchanger (PFHE) is a popular and featured compact heat exchanger, which transfers heat at relatively low-temperature differences and has a high heat transfer surface area to volume ratio. Due to the compact size and light weight, it has been widely used in various engineering areas such as energy, transportation and aerospace. The optimal design of PFHE aims to minimize the economic cost or maximize the efficiency, formulating a mixed integer nonlinear optimization problem which challenges the optimization tools. In this paper, the number of entropy generation units is formulated as the objective functions. Given the strong non-linear behaviors, a recent proposed meta-heuristic algorithm named sine cosine algorithm (SCA) is adopted to solve the problem of the design and optimization of the PFHE and compared with the results of several classical and new algorithms. Test results show that the sine cosine algorithm is the a competitive solver for PFHE optimal design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Attia, A.F., El Sehiemy, R.A., Hasanien, H.M.: Optimal power flow solution in power systems using a novel sine-cosine algorithm. Int. J. Electr. Power Energy Syst. 99, 331–343 (2018)

    Article  Google Scholar 

  2. Bejan, A.: Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-size Systems and Finite-time Processes. CRC Press, New York (2013)

    Book  MATH  Google Scholar 

  3. Fu, W., Wang, K., Li, C., Tan, J.: Multi-step short-term wind speed forecasting approach based on multi-scale dominant ingredient chaotic analysis, improved hybrid gwo-sca optimization and elm. Energy Convers. Manag. 187, 356–377 (2019)

    Article  Google Scholar 

  4. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif. Intell. Rev. 12(4), 265–319 (1998)

    Article  MATH  Google Scholar 

  5. Incropera, F.P., Lavine, A.S., Bergman, T.L., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer. Wiley, Hoboken (2007)

    Google Scholar 

  6. Joshi, H.M., Webb, R.L.: Heat transfer and friction in the offset stripfin heat exchanger. Int. J. Heat Mass Transf. 30(1), 69–84 (1987)

    Article  Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  8. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  9. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  10. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  11. Patel, V., Savsani, V.: Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching-learning based optimization (MO-ITLBO) algorithm. Chem. Eng. Res. Des. 92(11), 2371–2382 (2014)

    Article  Google Scholar 

  12. Rao, R.V., Patel, V.: Thermodynamic optimization of plate-fin heat exchanger using teaching-learning-based optimization (TLBO) algorithm. Optimization 10, 11–12 (2011)

    Google Scholar 

  13. Rao, R.V., Patel, V.: Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm. Appl. Math. Model. 37(3), 1147–1162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)

    Article  MathSciNet  Google Scholar 

  15. Sanaye, S., Hajabdollahi, H.: Multi-objective optimization of shell and tube heat exchangers. Appl. Therm. Eng. 30(14–15), 1937–1945 (2010)

    Article  Google Scholar 

  16. Shah, R.K., Sekulic, D.P.: Fundamentals of Heat Exchanger Design. Wiley, Hoboken (2003)

    Book  Google Scholar 

  17. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yuen, S.Y., Lou, Y., Zhang, X.: Selecting evolutionary algorithms for black box design optimization problems. Soft. Comput. 23(15), 6511–6531 (2018). https://doi.org/10.1007/s00500-018-3302-y

    Article  Google Scholar 

  19. Zarea, H., Kashkooli, F.M., Soltani, M., Rezaeian, M.: A novel single and multi-objective optimization approach based on bees algorithm hybrid with particle swarm optimization (bahpso): Application to thermal-economic design of plate fin heat exchangers. Int. J. Therm. Sci. 129, 552–564 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This research work is supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No. LY19F030011, National Natural Science Foundation of Guangdong (No. 2018A030310671, 2016A030313177), Guangdong Frontier and Key Technological Innovation (No. 2017B090910013), Science and Technology Innovation Commission of Shenzhen (ZDSYS20190902093209795), and Outstanding Young Researcher Innovation Fund of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (201822).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lidong Zhang or Zhile Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, T., Zhang, L., Yang, Z., Guo, Y., Ma, H. (2020). Design Optimization of Plate-Fin Heat Exchanger Using Sine Cosine Algorithm. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2020. Communications in Computer and Information Science, vol 1265. Springer, Singapore. https://doi.org/10.1007/978-981-15-7670-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7670-6_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7669-0

  • Online ISBN: 978-981-15-7670-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics