[go: up one dir, main page]

Skip to main content

Recent Bio-inspired Algorithms for Solving Flexible Job Shop Scheduling Problem: A Comparative Study

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1159))

  • 1037 Accesses

Abstract

Flexible job shop scheduling problem (FJSP) is an extended formulation of the classical job shop scheduling problem, endowing great significance in the modern manufacturing system. The FJSP defines an operation that can be processed by any machine from a given set, which is a strong constrained NP-hard problem and intractable to be solved. In this paper, three recent proposed meta-heuristic optimization algorithms have been employed in solving the FJSP aiming to minimize the makespan, including moth-flame optimization (MFO), teaching-learning-based optimization (TLBO) and Rao-2 algorithm. Two featured FJSP cases are carried out and compared to evaluate the effectiveness and efficiency of the three algorithms, also associated with other classical algorithm counterparts. Numerical studies results demonstrate that the three algorithms can achieve significant improvement for solving FJSP, and MFO method appears to be the most competitive solver for the given cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baykasoğlu, A., Özbakır, L.: Analyzing the effect of dispatching rules on the scheduling performance through grammar based flexible scheduling system. Int. J. Prod. Econ 124(2), 369–381 (2010)

    Article  Google Scholar 

  2. Chaudhry, I.A., Khan, A.A.: A research survey: review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 23(3), 551–591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Demir, Y., İşleyen, S.K.: Evaluation of mathematical models for flexible job-shop scheduling problems. Appl. Math. Model. 37(3), 977–988 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Driss, I., Mouss, K.N., Laggoun, A.: A new genetic algorithm for flexible job-shop scheduling problems. J. Mech. Sci. Technol. 29(3), 1273–1281 (2015). https://doi.org/10.1007/s12206-015-0242-7

    Article  Google Scholar 

  5. Fattahi, P., Mehrabad, M.S., Jolai, F.: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. J. Intell. Manuf. 18(3), 331–342 (2007). https://doi.org/10.1007/s10845-007-0026-8

    Article  Google Scholar 

  6. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jia, S., Hu, Z.H.: Path-relinking tabu search for the multi-objective flexible job shop scheduling problem. Comput. Oper. Res. 47, 11–26 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  9. Özgüven, C., Özbakır, L., Yavuz, Y.: Mathematical models for job-shop scheduling problems with routing and process plan flexibility. Appl. Math. Model. 34(6), 1539–1548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res. 35(10), 3202–3212 (2008)

    Article  MATH  Google Scholar 

  11. Rao, R.: Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. Int. J. Ind. Eng. Comput. 11(1), 107–130 (2020)

    Google Scholar 

  12. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  13. Roshanaei, V., Azab, A., Elmaraghy, H.: Mathematical modelling and a meta-heuristic for flexible job shop scheduling. Int. J. Prod. Res. 51(20), 6247–6274 (2013)

    Article  Google Scholar 

  14. Seebacher, G., Winkler, H.: Evaluating flexibility in discrete manufacturing based on performance and efficiency. Int. J. Prod. Econ. 153(4), 340–351 (2014)

    Article  Google Scholar 

  15. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54(3), 453–473 (2008)

    Article  Google Scholar 

  16. Torabi, S.A., Karimi, B., Ghomi, S.M.T.F.: The common cycle economic lot scheduling in flexible job shops: The finite horizon case. Int. J. Prod. Econ. 97(1), 52–65 (2005)

    Article  Google Scholar 

  17. Vilcot, G., Billaut, J.C.: A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem. Int. J. Prod. Res. 49(23), 6963–6980 (2011)

    Article  Google Scholar 

  18. Yuan, Y., Xu, H.: Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Trans. Autom. Sci. Eng. 12(1), 336–353 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ziaee, M.: A heuristic algorithm for solving flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology 71(1–4), 519–528 (2013). https://doi.org/10.1007/s00170-013-5510-z

    Article  Google Scholar 

Download references

Acknowledgment

This research work is supported by the National Key Research and Development Project under Grant 2018YFB1700500, and Science and Technology Project of Shenzhen (JSGG20170823140127645).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhile Yang or Yanhui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, D., Zhou, X., Yang, Z., Zhang, Y. (2020). Recent Bio-inspired Algorithms for Solving Flexible Job Shop Scheduling Problem: A Comparative Study. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1159. Springer, Singapore. https://doi.org/10.1007/978-981-15-3425-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3425-6_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3424-9

  • Online ISBN: 978-981-15-3425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics