[go: up one dir, main page]

Skip to main content

Image Retrieval Based on Optimized Visual Dictionary and Adaptive Soft Assignment

  • Conference paper
  • First Online:
Internet Multimedia Computing and Service (ICIMCS 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 819))

Included in the following conference series:

  • 1440 Accesses

Abstract

In this work, we propose a new image retrieval scheme by identifying better visual representations and fusing multiple similarities based on multiple features. For visual representation, we propose a new coarse-to-fine visual dictionary construction method based on the bag-of-features model. An adaptive soft assignment technique is developed to assign one local descriptor to several nearest visual words. To leverage the advantages of different features, a fusion strategy based on similarities is introduced to fuse multiple features. Experimental results demonstrate the effectiveness of the proposed method for image retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 107.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzubi, A., Amira, A., Ramzan, N.: Semantic content-based image retrieval. J. Vis. Commun. Image Represent. 32(C), 20–54 (2015)

    Article  Google Scholar 

  2. Hiremath, P.S., Pujari, J.: Content based image retrieval using color, texture and shape features. In: ADCOM, pp. 780–784 (2007)

    Google Scholar 

  3. Tousch, A.M., Herbin, S., Audibert, J.Y.: Semantic hierarchies for image annotation: a survey. Pattern Recogn. 45(1), 333–345 (2012)

    Article  Google Scholar 

  4. Kusumam, K., Duckett, T.: Image features and seasons revisited. In: European Conference on Mobile Robots (2015)

    Google Scholar 

  5. Jian, M., Lam, K.M., Dong, J.: Facial-feature detection and localization based on hierarchical scheme. Inf. Sci. 262(3), 1–14 (2014)

    Article  Google Scholar 

  6. Jian, M., Lam, K.M.: Face-image retrieval based on singular values and potential-field representation. Signal Process. 100(7), 9–15 (2014)

    Article  Google Scholar 

  7. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In: ICCV (2004)

    Google Scholar 

  8. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  10. Zhang, S., Yang, M., Cour, T.: Query specific rank fusion for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 37(4), 803–815 (2015)

    Article  Google Scholar 

  11. Liu, J.: Image retrieval based on bag-of-words model. Computer Science (2013)

    Google Scholar 

  12. Jurie, F., Triggs, B.: Creating efficient codebooks for visual recognition. In: ICCV (2005)

    Google Scholar 

  13. Wan, T., Qin, Z.: A new technique for summarizing video sequences through histogram evolution. In: International Conference on Signal Processing and Communications, pp. 1–5 (2010)

    Google Scholar 

  14. Ge, T., He, K., Ke, Q.: Optimized product quantization for approximate nearest neighbor search. In: CVPR (2013)

    Google Scholar 

  15. Hong, R., Yang, Y., Wang, M., Hua, X.S.: Learning visual semantic relationships for efficient visual retrieval. IEEE Trans. Big Data 1(4), 152–161 (2017)

    Article  Google Scholar 

  16. Yu, J., Qin, Z., Wan, T., Zhang, X.: Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing 120(10), 355–364 (2013)

    Article  Google Scholar 

  17. Tian, X., Jiao, L., Liu, X., Zhang, X.: Feature integration of eodh and color-sift: application to image retrieval based on codebook. Signal Process. Image Commun. 29(4), 530–545 (2014)

    Article  Google Scholar 

  18. Zheng, L., Wang, S., Liu, Z., Tian, Q.: Packing and padding: coupled multi-index for accurate image retrieval. In: CVPR, pp. 1947–1954 (2014)

    Google Scholar 

  19. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_24

    Chapter  Google Scholar 

  20. Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: CVPR, pp. 1169–1176 (2009)

    Google Scholar 

  21. Liqiang, N., Yan, S., Meng, W., Richang, H., Tat-Seng, C.: Harvesting visual concepts for image search with complex queries. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 59–68. ACM (2012)

    Google Scholar 

  22. Nie, L., Wang, M., Zha, Z.J., Chua, T.S.: Oracle in image search: a content-based approach to performance prediction. ACM Trans. Inf. Syst. 30(2), 1–23 (2012)

    Article  Google Scholar 

  23. Li, Z., Tang, J.: Weakly supervised deep metric learning for community-contributed image retrieval. IEEE Trans. Multimedia 17(11), 1989–1999 (2015)

    Article  Google Scholar 

  24. Li, Z., Tang, J.: Weakly supervised deep matrix factorization for social image understanding. IEEE Trans. Image Process. 26(1), 276–288 (2016)

    Article  MathSciNet  Google Scholar 

  25. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: ICCV (2003)

    Google Scholar 

  26. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: CVPR (2008)

    Google Scholar 

  27. Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition. In: CVPR (2008)

    Google Scholar 

  28. Sayood, K.: Vector quantization. In: Introduction to Data Compression, pp. 295–344 (2012)

    Google Scholar 

  29. Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning binary codes. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2011)

    Article  Google Scholar 

  30. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)

    Article  Google Scholar 

  31. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)

    Google Scholar 

  32. Philbin, J., Chum, O., Isard, M.: Lost in quantization: improving particular object retrieval in large scale image databases. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  33. Wang, T., Zhao, Y., Li, B.: Image classification based on adaptive soft assignment. Terahertz Sci. Electron. Inf. Technol. 13(1), 154–159 (2015)

    Google Scholar 

  34. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int’l J. Comput. Vis. 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  35. Wang, X.: A novel circular ring histogram for content-based image retrieval. In: International Workshop on Education Technology and Computer Science, pp. 785–788 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the 973 Program (Project No. 2014CB347600), the National Natural Science Foundation of China (Grant No. 61402228, and 61702265) and the Natural Science Foundation of Jiangsu Province (Grant BK20140058, BK20170856 and BK20170033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Li, Z., Shu, X. (2018). Image Retrieval Based on Optimized Visual Dictionary and Adaptive Soft Assignment. In: Huet, B., Nie, L., Hong, R. (eds) Internet Multimedia Computing and Service. ICIMCS 2017. Communications in Computer and Information Science, vol 819. Springer, Singapore. https://doi.org/10.1007/978-981-10-8530-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8530-7_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8529-1

  • Online ISBN: 978-981-10-8530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics