[go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 404))

  • 795 Accesses

Abstract

Intuitionistic fuzzy databases are used to handle imprecise and uncertain data as they represent the membership, nonmembership, and hesitancy associated with a certain element in a set. This paper presents the Intuitionistic Fuzzy Fourth Normal Form to decompose the multivalued dependent data. A technique to determine Intuitionistic Fuzzy multivalued dependencies by working on the closure of dependencies has been proposed. We derive the closure by obtaining all the logically implied dependencies by a set of Intuitionistic Fuzzy multivalued dependencies, i.e., Inference Rules. A complete set of inference rules for the Intuitionistic Fuzzy multivalued dependencies has been given along with the derivation of each rule. These rules help us to compute the dependency closure and we further use the same for defining the Intuitionistic Fuzzy Fourth Normal Form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)

    Google Scholar 

  2. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen Syst. 35, 417–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pons, O., et al.: Dealing with disjunctive and missing information in logic fuzzy databases. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 4(2), 177–201 (1996)

    Google Scholar 

  5. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atanassov, K.: More on intuitionistic fuzzy-sets. Fuzzy Sets Syst. 33, 37–45 (1989)

    Google Scholar 

  7. Atanassov, K.T., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31, 343–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst. 79, 403–405 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Szmidt, E., Kacprzy,J.: Intuitionistic fuzzy sets in some medical applications. In: Proceeding of International Conference on Computational Science, Part–II, pp. 263–271(2001)

    Google Scholar 

  10. Sanchez, E.: Solutions in Composite Fuzzy Relation Equations: Application to Medical Diagnosis In Brouwerian Logic. Fuzzy Automata and Decision Processes, pp. 221–234, (Elsevier, New York 1977)

    Google Scholar 

  11. Chountas, P., et al.: On intuitionistic fuzzy expert systems with temporal parameters. Comput. Intell. Theory Appl. 38, 241–249 (2006)

    Google Scholar 

  12. Jun, Y.: Intuitionistic fuzzy finite state machines. J. Appl. Math. Comput. 17(1–2), 109–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. De, S.K.,Biswas, R., Roy, A. R.: Intuitionistic fuzzy database. In: Second International Conference on IFS, NIFS, vol. 4(2), pp. 43–31, Sofia (1998)

    Google Scholar 

  14. Imielinski, T., Lipski, W.: Incomplete information in relational databases. J. ACM 31(4), 761–791 (1984)

    Google Scholar 

  15. Laurent, D., Spyratos, N.: Partition semantics for incomplete information in relational databases. In: SIGMOD, ACM record, pp. 66–73, New York (1988)

    Google Scholar 

  16. Lipski, W.: On semantic issues connected with incomplete information databases. ACM Trans. Database Syst. 4(3), 262–296 (1979)

    Google Scholar 

  17. Liu, K.C., Sunderraman, R.: A generalized relational model for indefinite and maybe information. IEEE Trans. Knowl. Data Eng. 3(1), 65–76 (1991)

    Article  Google Scholar 

  18. Ola, A., Ozsoyoglu, G.: Incomplete relational database models based on intervals. IEEE Trans. Knowl. Data Eng. 5(2), 293–308(1993)

    Google Scholar 

  19. Vassiliou, Y.: Functional dependencies and incomplete information. In: Proceeding of Sixth International Conference on VLDB, pp. 260–269, Canada (1980)

    Google Scholar 

  20. Hamouz, S.A., Biswas, R.: Fuzzy functional dependencies in relational databases. Int. J. Comput. cogn. 4(1) (2006)

    Google Scholar 

  21. Cubero, J.C., et al.: Computing fuzzy dependencies with linguistic label. Stud. Fuzziness Soft Comput. 34, 368–382, Springer (1999)

    Google Scholar 

  22. Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM Trans. Database syst. 13, 129–166 (1988)

    Google Scholar 

  23. Deschrijver, G., Kerre, E.E.: On the composition of intuitionistic fuzzy relations. Fuzzy Sets Syst. 136, 333–361(2003)

    Google Scholar 

  24. Kumar, D.A., et al.: A method of intuitionistic fuzzy functional dependencies in relational databases. Eur. J. Sci. Res. 29(3), 415–425 (2009)

    Google Scholar 

  25. Alam, M.A., Ahmad, S., Biswas, R.: Normalization of intuitionistic fuzzy relational database. NIFS l0(1), 1–6(2004)

    Google Scholar 

  26. Hussain, S., Alam, M.A., Biswas, R.: Normalization of intuitionistic fuzzy relational database into second normal form—2NF (IF). Int. J. Math. Sci. Eng. Appl. (IJMSEA) 3(3), 87–96(2009)

    Google Scholar 

  27. Hussain, S., Alam, M.A.: Normalization of intuitionistic fuzzy relational database into third normal form—3NF (IF). Int. J. Math. Sci. Eng. Appl. (IJMSEA), 4(1), 151–157 (2010)

    Google Scholar 

  28. Shora, A.R., Alam, M.A.: Data dependencies and normalization of intuitionistic fuzzy databases. In: Advanced Computing, Networking and Informatics, Vol1, Smart Innovation, Systems and Technologies, vol. 27, pp. 309–318, Springer (2014)

    Google Scholar 

  29. Jyothi, S., Babu, M.S.: Multivalued dependencies in fuzzy relational databases and lossless join decomposition. Fuzzy Sets Syst. 88, 315–332 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Silberschatz, A., Korth, S.: Database System Concepts, 5th edn, pp. 295. (McGraw-Hill, New York 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma R Shora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Shora, A.R., Alam, A., Biswas, R. (2016). Intuitionistic Fuzzy Multivalued Dependency and Intuitionistic Fuzzy Fourth Normal Form. In: Das, S., Pal, T., Kar, S., Satapathy, S., Mandal, J. (eds) Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015. Advances in Intelligent Systems and Computing, vol 404. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2695-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2695-6_33

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2693-2

  • Online ISBN: 978-81-322-2695-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics