Abstract
Intuitionistic fuzzy databases are used to handle imprecise and uncertain data as they represent the membership, nonmembership, and hesitancy associated with a certain element in a set. This paper presents the Intuitionistic Fuzzy Fourth Normal Form to decompose the multivalued dependent data. A technique to determine Intuitionistic Fuzzy multivalued dependencies by working on the closure of dependencies has been proposed. We derive the closure by obtaining all the logically implied dependencies by a set of Intuitionistic Fuzzy multivalued dependencies, i.e., Inference Rules. A complete set of inference rules for the Intuitionistic Fuzzy multivalued dependencies has been given along with the derivation of each rule. These rules help us to compute the dependency closure and we further use the same for defining the Intuitionistic Fuzzy Fourth Normal Form.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen Syst. 35, 417–433 (2006)
Pons, O., et al.: Dealing with disjunctive and missing information in logic fuzzy databases. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 4(2), 177–201 (1996)
Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
Atanassov, K.: More on intuitionistic fuzzy-sets. Fuzzy Sets Syst. 33, 37–45 (1989)
Atanassov, K.T., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31, 343–349 (1989)
Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst. 79, 403–405 (1996)
Szmidt, E., Kacprzy,J.: Intuitionistic fuzzy sets in some medical applications. In: Proceeding of International Conference on Computational Science, Part–II, pp. 263–271(2001)
Sanchez, E.: Solutions in Composite Fuzzy Relation Equations: Application to Medical Diagnosis In Brouwerian Logic. Fuzzy Automata and Decision Processes, pp. 221–234, (Elsevier, New York 1977)
Chountas, P., et al.: On intuitionistic fuzzy expert systems with temporal parameters. Comput. Intell. Theory Appl. 38, 241–249 (2006)
Jun, Y.: Intuitionistic fuzzy finite state machines. J. Appl. Math. Comput. 17(1–2), 109–120 (2005)
De, S.K.,Biswas, R., Roy, A. R.: Intuitionistic fuzzy database. In: Second International Conference on IFS, NIFS, vol. 4(2), pp. 43–31, Sofia (1998)
Imielinski, T., Lipski, W.: Incomplete information in relational databases. J. ACM 31(4), 761–791 (1984)
Laurent, D., Spyratos, N.: Partition semantics for incomplete information in relational databases. In: SIGMOD, ACM record, pp. 66–73, New York (1988)
Lipski, W.: On semantic issues connected with incomplete information databases. ACM Trans. Database Syst. 4(3), 262–296 (1979)
Liu, K.C., Sunderraman, R.: A generalized relational model for indefinite and maybe information. IEEE Trans. Knowl. Data Eng. 3(1), 65–76 (1991)
Ola, A., Ozsoyoglu, G.: Incomplete relational database models based on intervals. IEEE Trans. Knowl. Data Eng. 5(2), 293–308(1993)
Vassiliou, Y.: Functional dependencies and incomplete information. In: Proceeding of Sixth International Conference on VLDB, pp. 260–269, Canada (1980)
Hamouz, S.A., Biswas, R.: Fuzzy functional dependencies in relational databases. Int. J. Comput. cogn. 4(1) (2006)
Cubero, J.C., et al.: Computing fuzzy dependencies with linguistic label. Stud. Fuzziness Soft Comput. 34, 368–382, Springer (1999)
Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM Trans. Database syst. 13, 129–166 (1988)
Deschrijver, G., Kerre, E.E.: On the composition of intuitionistic fuzzy relations. Fuzzy Sets Syst. 136, 333–361(2003)
Kumar, D.A., et al.: A method of intuitionistic fuzzy functional dependencies in relational databases. Eur. J. Sci. Res. 29(3), 415–425 (2009)
Alam, M.A., Ahmad, S., Biswas, R.: Normalization of intuitionistic fuzzy relational database. NIFS l0(1), 1–6(2004)
Hussain, S., Alam, M.A., Biswas, R.: Normalization of intuitionistic fuzzy relational database into second normal form—2NF (IF). Int. J. Math. Sci. Eng. Appl. (IJMSEA) 3(3), 87–96(2009)
Hussain, S., Alam, M.A.: Normalization of intuitionistic fuzzy relational database into third normal form—3NF (IF). Int. J. Math. Sci. Eng. Appl. (IJMSEA), 4(1), 151–157 (2010)
Shora, A.R., Alam, M.A.: Data dependencies and normalization of intuitionistic fuzzy databases. In: Advanced Computing, Networking and Informatics, Vol1, Smart Innovation, Systems and Technologies, vol. 27, pp. 309–318, Springer (2014)
Jyothi, S., Babu, M.S.: Multivalued dependencies in fuzzy relational databases and lossless join decomposition. Fuzzy Sets Syst. 88, 315–332 (1997)
Silberschatz, A., Korth, S.:Â Database System Concepts, 5th edn, pp. 295. (McGraw-Hill, New York 2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer India
About this paper
Cite this paper
Shora, A.R., Alam, A., Biswas, R. (2016). Intuitionistic Fuzzy Multivalued Dependency and Intuitionistic Fuzzy Fourth Normal Form. In: Das, S., Pal, T., Kar, S., Satapathy, S., Mandal, J. (eds) Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015. Advances in Intelligent Systems and Computing, vol 404. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2695-6_33
Download citation
DOI: https://doi.org/10.1007/978-81-322-2695-6_33
Published:
Publisher Name: Springer, New Delhi
Print ISBN: 978-81-322-2693-2
Online ISBN: 978-81-322-2695-6
eBook Packages: EngineeringEngineering (R0)