[go: up one dir, main page]

Skip to main content

Efficient Computation in Brownian Cellular Automata

  • Conference paper
Natural Computing

Part of the book series: Proceedings in Information and Communications Technology ((PICT,volume 2))

  • 844 Accesses

Abstract

A Brownian cellular automaton is a kind of asynchronous cellular automaton, in which certain local configurations—like signals—propagate randomly in the cellular space, resembling Brownian motion. The Brownian-like behavior is driven by three kinds of local transition rules, two of which are locally reversible and rotation symmetric, thus mapping a rule’s left-hand side into a right-hand side is equivalent modulus rotations of multiples of 90 degrees. As a result, any update of cells using these rules can always be followed by a reversed update undoing it; this resembles the reversal of chemical reactions or other molecular processes. The third transition rule is not reversible and is merely used for diffusive purposes, so that signals can fluctuate forward and backward on wires like with random walks of molecules. The use of only these three rules is sufficient for embedding arbitrary asynchronous circuits on the cellular automaton, thus making it computationally universal. Key to this universality is the straightforward implementation of signal propagation as well as of the active backtracking of cell updates, which enables an effective realization of arbitration and choice – a functionality that is essential for asynchronous circuits but usually hard to implement efficiently on non-Brownian cellular automata. We show how to speed up the operation of circuits embedded in our Brownian cellular automaton. One method focuses on the design scheme of the circuits, by confining all necessary Brownian motions to local configurations representing primitive elements of circuits, such that a wire connecting two elements no longer needs backward propagation of signals on it, thus allowing the use of conventional design schemes of asynchronous circuits without change. Another method is to implement ratchets on the input and output lines by using various configurations in the cellular space, so as to further increase the speeds of signals on the wires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adachi, S., Peper, F., Lee, J.: Computation by asynchronously updating cellular automata. Journal of Statistical Physics 114(1/2), 261–289 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H.: The thermodynamics of computation–a review. International Journal of Theoretical Physics 21(12), 905–940 (1982)

    Article  Google Scholar 

  3. Dasmahapatra, S., Werner, J., Zauner, K.P.: Noise as a computational resource. Int. J. of Unconventional Computing 2(4), 305–319 (2006)

    Google Scholar 

  4. Frank, M., Vieri, C., Ammer, M.J., Love, N., Margolus, N.H., Knight Jr., T.: A scalable reversible computer in silicon. In: Calude, C.S., Casti, J., Dinneen, M.J. (eds.) Unconventional Models of Computation, pp. 183–200. Springer, Singapore (1998)

    Google Scholar 

  5. Hauck, S.: Asynchronous design methodologies: an overview. Proc. IEEE 83(1), 69–93 (1995)

    Article  MathSciNet  Google Scholar 

  6. Heinrich, A.J., Lutz, C.P., Gupta, J.A., Eigler, D.M.: Molecule cascades. Science 298, 1381–1387 (2002)

    Article  Google Scholar 

  7. Kish, L.B.: Thermal noise driven computing. Applied Physics Letters 89(14), 144104–1–3 (2006)

    Google Scholar 

  8. Lee, J., Peper, F., Adachi, S., Morita, K., Mashiko, S.: Reversible computation in asynchronous cellular automata. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 220–229. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Lee, J., Adachi, S., Peper, F., Morita, K.: Embedding universal delay-insensitive circuits in asynchronous cellular spaces. Fundamenta Informaticae 58(3-4), 295–320 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asynchronous cellular automata. Journal of Computer and System Sciences 70, 201–220 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lee, J., Peper, F., Adachi, S., Morita, K.: An Asynchronous Cellular Automaton Implementing 2-State 2-Input 2-Output Reversed-Twin Reversible Elements. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 67–76. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Lee, J., Peper, F.: On Brownian cellular automata. In: Theory and Applications of Cellular Automata, p. 278. Luniver Press (2008)

    Google Scholar 

  13. Lee, J., Peper, F., et al.: Brownian circuits—part II (in preparation)

    Google Scholar 

  14. MacLennan, B.J.: Computation and nanotechnology. Int. J. of Nanotechnology and Molecular Computation 1 (2009)

    Google Scholar 

  15. Patra, P., Fussell, D.S.: Conservative delay-insensitive circuits. In: Workshop on Physics and Computation, pp. 248–259 (1996)

    Google Scholar 

  16. Peper, F., Lee, J., Adachi, S., Mashiko, S.: Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? Nanotechnology 14(4), 469–485 (2003)

    Article  Google Scholar 

  17. Peper, F., Lee, J., Isokawa, T.: Cellular nanocomputers: a focused review. Int. J. of Nanotechnology and Molecular Computation 1, 33–49 (2009)

    Google Scholar 

  18. Peper, F., Lee, J., et al.: Brownian circuits—Part I (in preparation)

    Google Scholar 

  19. Yanagida, T., Ueda, M., Murata, T., Esaki, S., Ishii, Y.: Brownian motion, fluctuation and life. Biosystems 88(3), 228–242 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Tokyo

About this paper

Cite this paper

Lee, J., Peper, F. (2010). Efficient Computation in Brownian Cellular Automata. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds) Natural Computing. Proceedings in Information and Communications Technology, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53868-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53868-4_8

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53867-7

  • Online ISBN: 978-4-431-53868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics