[go: up one dir, main page]

Skip to main content

Hybrid One-Class Ensemble for High-Dimensional Data Classification

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9622))

Included in the following conference series:

  • 1588 Accesses

Abstract

The advance of high-throughput techniques, such as gene microarrays and protein chips have a major impact on contemporary biology and medicine. Due to the high-dimensionality and complexity of the data, it is impossible to analyze it manually. Therefore machine learning techniques play an important role in dealing with such data. In this paper we propose to use a one-class approach to classifying microarrays. Unlike canonical classifiers, these models rely only on objects coming from single class distributions. They distinguish observations coming from the given class from any other possible states of the object, that were unseen during the classification step. While having less information to dichotomize between classes, one-class models can easily learn the specific properties of a given dataset and are robust to difficulties embedded in the nature of the data. We show, that using one-class ensembles can give as good results as canonical multi-class classifiers, while allowing to deal with imbalanced distribution and unexpected noise in the data. To cope with high dimensionality of the feature space, we propose a novel hybrid one-class ensemble utilizing combination of weighted Bagging and Random Subspaces. Experimental investigations, carried on public datasets, prove the usefulness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://datam.i2r.a-star.edu.sg/datasets/krbd/.

References

  1. Bariamis, D., Maroulis, D., Iakovidis, D.K.: Unsupervised SVM-based gridding for DNA microarray images. Comput. Med. Imaging Graph. 34(6), 418–425 (2010)

    Article  Google Scholar 

  2. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999)

    Article  Google Scholar 

  3. Bicego, M., Figueiredo, M.A.T.: Soft clustering using weighted one-class support vector machines. Pattern Recogn. 42(1), 27–32 (2009)

    Article  MATH  Google Scholar 

  4. Cyganek, B.: One-class support vector ensembles for image segmentation and classification. J. Math. Imaging Vis. 42(2–3), 103–117 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Czarnecki, W.M., Tabor, J.: Two ellipsoid support vector machines. Expert Syst. Appl. 41(18), 8211–8224 (2014)

    Article  Google Scholar 

  6. Desir, C., Bernard, S., Petitjean, C., Heutte, L.: One class random forests. Pattern Recogn. 46(12), 3490–3506 (2013)

    Article  Google Scholar 

  7. Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., Chen, H., Omeroglu, G., Meterissian, S., Omeroglu, A., Hallett, M., Park, M.: Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14(5), 518–527 (2008)

    Article  Google Scholar 

  8. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)

    Article  Google Scholar 

  9. Inza, I., Larraaga, P., Blanco, R., Cerrolaza, A.J.: Filter versus wrapper gene selection approaches in dna microarray domains. Artif. Intell. Med. 31(2), 91–103 (2004)

    Article  Google Scholar 

  10. Krawczyk, B.: Forming ensembles of soft one-class classifiers with weighted bagging. New Gener. Comput. 33(4), 449–466 (2015)

    Article  Google Scholar 

  11. Krawczyk, B., Woźniak, M., Herrera, F.: On the usefulness of one-class classifier ensembles for decomposition of multi-class problems. Pattern Recogn. 48(12), 3969–3982 (2015)

    Article  Google Scholar 

  12. Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A., Armananzas, R.: Machine learning in bioinformatics. Briefings Bioinform. 7(1), 86–112 (2006)

    Article  Google Scholar 

  13. Liu, K., Huang, D.: Cancer classification using rotation forest. Comput. Biol. Med. 38(5), 601–610 (2008)

    Article  Google Scholar 

  14. Lynch, C.C., Hikosaka, A., Acuff, H.B., Martin, M.D., Kawai, N., Singh, R.K., Vargo-Gogola, T.C., Begtrup, J.L., Peterson, T.E., Fingleton, B., Shirai, T., Matrisian, L.M., Futakuchi, M.: MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7(5), 485–496 (2005)

    Article  Google Scholar 

  15. Moorthy, K., Mohamad, M.S.: Random forest for gene selection and microarray data classification. In: Lukose, D., Ahmad, A.R., Suliman, A. (eds.) KTW 2011. CCIS, vol. 295, pp. 174–183. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Noto, K., Brodley, C., Slonim, D.: FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection. Data Min. Knowl. Discov. 25(1), 109–133 (2012)

    Article  MathSciNet  Google Scholar 

  17. Ringner, M., Peterson, C., Khan, J.: Analyzing array data using supervised methods. Pharmacogenomics 3(3), 403–415 (2002). Cited By (since 1996): 43

    Article  Google Scholar 

  18. Schatton, T., Murphy, G.F., Frank, N.Y., Yamaura, K., Waaga-Gasser, A.M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L.M., Weishaupt, C., Fuhlbrigge, R.C., Kupper, T.S., Sayegh, M.H., Frank, M.H.: Identification of cells initiating human melanomas. Nature 451(7176), 345–349 (2008)

    Article  Google Scholar 

  19. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. MIT Press, Cambridge (2002)

    Google Scholar 

  20. Silveira, V.S., Scrideli, C.A., Moreno, D.A., Yunes, J.A., Queiroz, R.G.P., Toledo, S.C., Lee, M.L.M., Petrilli, A.S., Brandalise, S.R., Tone, L.G.: Gene expression pattern contributing to prognostic factors in childhood acute lymphoblastic leukemia. Leukemia Lymphoma 54(2), 310–314 (2013)

    Article  Google Scholar 

  21. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  22. Tax, D.M.J., Duin, R.P.W.: Combining one-class classifiers. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, p. 299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Tax, D.M.J., Juszczak, P., Pekalska, E., Duin, R.P.W.: Outlier detection using ball descriptions with adjustable metric. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 587–595. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. R Development Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2008)

    Google Scholar 

  25. Tinker, A.V., Boussioutas, A., Bowtell, D.D.L.: The challenges of gene expression microarrays for the study of human cancer. Cancer Cell 9(5), 333–339 (2006)

    Article  Google Scholar 

  26. Trawiński, B.: Evolutionary fuzzy system ensemble approach to model real estate market based on data stream exploration. J. UCS 19(4), 539–562 (2013)

    Google Scholar 

  27. Wang, Y., Yu, Z., Anh, V.: Fuzzy C-means method with empirical mode decomposition for clustering microarray data. Int. J. Data Min. Bioinf. 7(2), 103–117 (2013)

    Article  Google Scholar 

  28. Wilk, T., Woźniak, M.: Soft computing methods applied to combination of one-class classifiers. Neurocomputing 75, 185–193 (2012)

    Article  Google Scholar 

  29. Woźniak, M., Grana, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16(1), 3–17 (2014)

    Article  Google Scholar 

  30. Woźniak, M., Zmyślony, M.: Chosen problems of designing effective multiple classifier systems. In: International Conference on Computer Information Systems and Industrial Management Applications, CISIM, Krakow, Poland, 8–10 October 2010, pp. 42–47 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by The Polish National Science Centre under the grant PRELUDIUM number DEC-2013/09/N/ST6/03504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Krawczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krawczyk, B. (2016). Hybrid One-Class Ensemble for High-Dimensional Data Classification. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, TP. (eds) Intelligent Information and Database Systems. ACIIDS 2016. Lecture Notes in Computer Science(), vol 9622. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49390-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49390-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49389-2

  • Online ISBN: 978-3-662-49390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics