Abstract
Harmony Search is a metaheuristic technique for optimizing problems involving sets of continuous or discrete variables, inspired by musicians searching for harmony between instruments in a performance. Here we investigate two frameworks, using Harmony Search to select a mixture of continuous and discrete variables forming the components of a Memetic Algorithm for cross-domain heuristic search. The first is a single-point based framework which maintains a single solution, updating the harmony memory based on performance from a fixed starting position. The second is a population-based method which co-evolves a set of solutions to a problem alongside a set of harmony vectors. This work examines the behaviour of each framework over thirty problem instances taken from six different, real-world problem domains. The results suggest that population co-evolution performs better in a time-constrained scenario, however both approaches are ultimately constrained by the underlying metaphors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Geem, Z.W., Kim, J.H., Loganathan, G.V.: New heuristic optimization algorithm: Harmony search. Simulation 76(2), 60–68 (2001)
Al-Betar, M.A., Khader, A.T.: A harmony search algorithm for university course timetabling. Ann. Oper. Res. 194(1), 3–31 (2012)
Wang, L., Pan, Q.K., Tasgetiren, M.F.: Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms. Expert Syst. Appl. 37(12), 7929–7936 (2010)
Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Ser, J.D., Bilbao, M., Salcedo-Sanz, S., Geem, Z.: A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013)
Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)
Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A classification of hyper-heuristics approaches. In: Handbook of Metaheuristics, 2nd edn., pp. 49–468 (2010)
Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: A survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for cross domain heuristic search. In: Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 307–316. Springer, Heidelberg (2012)
Drake, J.H., Özcan, E., Burke, E.K.: Modified choice function heuristic selection for the multidimensional knapsack problem. In: Sun, H., Yang, Chin-Yu., Lin, C.-W., Pan, J.-S., Snasel, V., Abraham, A. (eds.) Genetic and Evolutionary Computing. AISC, vol. 329, pp. 225–234. Springer, Heidelberg (2015)
Drake, J.H., Hyde, M., Ibrahim, K., Özcan, E.: A genetic programming hyper-heuristic for the multidimensional knapsack problem. Kybernetes 43(9–10), 1500–1511 (2014)
Drake, J.H., Kililis, N., Özcan, E.: Generation of VNS components with grammatical evolution for vehicle routing. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 25–36. Springer, Heidelberg (2013)
López-Camacho, E., Terashima-MarÃn, H., Ross, P.: A hyper-heuristic for solving one and two-dimensional bin packing problems. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 257–258 (2011)
Kiraz, B., Uyar, A.S., Özcan, E.: Selection hyper-heuristics in dynamic environments. J. Oper. Res. Soc. 64(12), 1753–1769 (2013)
Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyper-heuristic for timetabling and rostering. J. Heuristics 9(6), 451–470 (2003)
Özcan, E., Misir, M., Ochoa, G., Burke, E.K.: A reinforcement learning – great deluge hyper-heuristic for examination timetabling. International Journal of Applied Metaheuristic Computing 1(1), 39–59 (2010)
Drake, J.H., Özcan, E., Burke, E.K.: A case study of controlling crossover in a selection hyper-heuristic framework using the multidimensional knapsack problem. Evolutionary computation (2015)
Fisher, H., Thompson, G.: Probabilistic learning combinations of local job-shop scheduling rules. In: Factory Scheduling Conference, Carnegie Institute of Technology (1961)
Gibbs, J., Kendall, G., Özcan, E.: Scheduling english football fixtures over the holiday period using hyper-heuristics. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 496–505. Springer, Heidelberg (2010)
Garrido, P., Castro, C.: Stable solving of cvrps using hyperheuristics. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 255–262 (2009)
Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. International series in operations research and management science, 457–474 (2003)
Özcan, E., Bilgin, B., Korkmaz, E.E.: Hill climbers and mutational heuristics in hyperheuristics. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 202–211. Springer, Heidelberg (2006)
Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J. A., Walker, J., Gendreau, M., et al.: Hyflex: a benchmark framework for cross-domain heuristic search. In: Evolutionary Computation in Combinatorial Optimization, pp. 136–147 (2012)
Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., McCollum, B., Ochoa, G., Parkes, A.J., Petrovic, S.: The cross-domain heuristic search challenge – an international research competition. In: Coello, C.A. (ed.) LION 2011. LNCS, vol. 6683, pp. 631–634. Springer, Heidelberg (2011)
Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program. C3P Report, 826 (1989)
Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (2006)
Ochoa, G., Walker, J., Hyde, M., Curtois, T.: Adaptive evolutionary algorithms and extensions to the hyflex hyper-heuristic framework. In: Coello, C.A., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 418–427. Springer, Heidelberg (2012)
Anwar, K., Khader, A.T., Al-Betar, M.A., Awadallah, M.: Harmony search-based hyper-heuristic for examination timetabling. In: 2013 IEEE 9th International Colloquium on Signal Processing and its Applications (CSPA), pp. 176–181 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dempster, P., Drake, J.H. (2016). Two Frameworks for Cross-Domain Heuristic and Parameter Selection Using Harmony Search. In: Kim, J., Geem, Z. (eds) Harmony Search Algorithm. Advances in Intelligent Systems and Computing, vol 382. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47926-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-662-47926-1_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-47925-4
Online ISBN: 978-3-662-47926-1
eBook Packages: EngineeringEngineering (R0)